Research Profiles


2023

  • J. Sandino, B. Bollard, A. Doshi, K. Randall, J. Barthelemy, S. A. Robinson, and F. Gonzalez, “A green fingerprint of Antarctica: Drones, hyperspectral imaging, and machine learning for moss and lichen classification,” Remote sensing, vol. 15, no. 24, p. 5658, Dec. 2023. DOI: 10.3390/rs15245658.
A green fingerprint of Antarctica: Drones, hyperspectral imaging, and machine learning for moss and lichen classification

2022

  • J. Sandino, “Autonomous decision‑making for UAVs operating under environmental and object detection uncertainty,” Ph.D. dissertation, Queensland University of Technology, Brisbane, Australia, Jun. 2022. DOI: 10.5204/thesis.eprints.232513.
Autonomous decision‑making for UAVs operating under environmental and object detection uncertainty

2021

  • J. Sandino, F. Maire, P. Caccetta, C. Sanderson, and F. Gonzalez, “Drone-Based Autonomous Motion Planning System for Outdoor Environments under Object Detection Uncertainty,” Remote Sensing, vol. 13, no. 21, p. 4481, Nov. 2021. DOI: 10.3390/rs13214481.
Drone-Based Autonomous Motion Planning System for Outdoor Environments under Object Detection Uncertainty

2020

  • J. Sandino, F. Vanegas, F. Maire, P. Caccetta, C. Sanderson, and F. Gonzalez, “UAV Framework for Autonomous Onboard Navigation and People/Object Detection in Cluttered Indoor Environments,” Remote Sensing, vol. 12, no. 20, p. 3386, Oct. 2020. DOI: 10.3390/rs12203386.
UAV framework for autonomous onboard navigation and people/object detection in cluttered indoor environments
  • J. Sandino, F. Vanegas, F. Gonzalez, and F. Maire, “Autonomous UAV Navigation for Active Perception of Targets in Uncertain and Cluttered Environments,” in Aerospace Conference, Big Sky, MT, USA: IEEE, Mar. 2020, pp. 1–12. doi: 10.1109/AERO47225.2020.9172808.
Autonomous UAV Navigation for Active Perception of Targets in Uncertain and Cluttered Environments

2018

  • J. Sandino, G. Pegg, F. Gonzalez, and G. Smith, “Aerial mapping of forests affected by pathogens using UAVs, hyperspectral sensors, and artificial intelligence,” Sensors, vol. 18, no. 4, p. 944, 2018. doi: 10.3390/s18040944.
Aerial mapping of forests affected by pathogens using UAVs, hyperspectral sensors, and artificial intelligence
  • J. Sandino and F. Gonzalez, “A novel approach for invasive weeds and vegetation surveys using UAS and artificial intelligence,” in International Conference on Methods & Models in Automation & Robotics, IEEE, 2018, pp. 515–520. doi: 10.1109/MMAR.2018.8485874.
A Novel Approach for Invasive Weeds and Vegetation Surveys Using UAS and Artificial Intelligence
  • J. Sandino, F. Gonzalez, K. Mengersen, and K. J. Gaston, “UAVs and machine learning revolutionising invasive grass and vegetation surveys in remote arid lands,” Sensors, vol. 18, no. 2, p. 605, 2018. doi: 10.3390/s18020605.
UAVs and machine learning revolutionising invasive grass and vegetation surveys in remote arid lands

2017

  • J. Sandino, D. Amaya Hurtado, and O. L. Ramos, “Prediction of reproductive system affectation in sprague dawley rats by food intake exposed with fenthion, using naïve bayes classifier and genetic algorithms,” Biosciences, Biotechnology Research Asia, vol. 14, no. 4, pp. 1291–1297, 2017. doi: 10.13005/bbra/2572.
  • J. Sandino, A. Wooler, and F. Gonzalez, “Towards the automatic detection of pre-existing termite mounds through UAS and hyperspectral imagery,” Sensors, vol. 17, no. 10, p. 2196, 2017. doi: 10.3390/s17102196.
Towards the automatic detection of pre-existing termite mounds through UAS and hyperspectral imagery

2016

  • J. Sandino, D. Amaya Hurtado, and O. L. Ramos Sandoval, “Prediction of endocrine system affectation in fisher 344 rats by food intake exposed with malathion, applying naïve bayes classifier and genetic algorithms,” International Journal of Preventive Medicine, vol. 7, no. 1, p. 111, 2016. doi: 10.4103/2008-7802.190611.
Prediction of endocrine system affectation in fisher 344 rats by food intake exposed with malathion, applying naïve bayes classifier and genetic algorithms
  • J. Sandino, D. Amaya Hurtado, and O. L. Ramos Sandoval, “Monitoreo preliminar de incidencia de fisiopatías en cultivos de fresa usando procesamiento digital de imágenes,” Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 14, no. 1, pp. 45–52, 2016. doi: 10.18684/BSAA(14)45-52.
Monitoreo preliminar de incidencia de fisiopatías en cultivos de fresa usando procesamiento digital de imágenes
  • J. Sandino, O. L. Ramos-Sandoval, and D. Amaya-Hurtado, “Method for estimating leaf coverage in strawberry plants using digital image processing,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 20, no. 8, pp. 716–721, 2016. doi: 10.1590/1807-1929/agriambi.v20n8p716-721.
Method for estimating leaf coverage in strawberry plants using digital image processing

2015

  • D. Amaya and J. Sandino, “Método preliminar de detección de patógenos biológicos en cultivos de fresa por medio del procesamiento digital de imágenes,” Revista de Investigación Agraria y Ambiental, vol. 6, no. 1, pp. 111–122, 2015. doi: 10.22490/21456453.1267.
Método preliminar de detección de patógenos biológicos en cultivos de fresa por medio del procesamiento digital de imágenes
Categories:

Juan

Juan is a research engineer at the QUT Centre for Robotics and CSIRO Data61, Brisbane, Australia. He holds a BEng (Mechatronics) and is undertaking a PhD in robotics and autonomous systems at the Queensland University of Technology (QUT), Australia. His primary interests comprise autonomous small Unmanned Aerial Vehicle (UAV) decision-making, machine learning and computer vision for UAV remote sensing, with a focus on hyperspectral and high-resolution image processing. Juan has worked for research projects in biosecurity, environment monitoring and time-critical applications such as land search and rescue to find lost people in collapsed buildings and bushlands.