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Abstract 

THE increasing number of automated capabilities now available to better operate unmanned 

aerial vehicles (UAVs)—also known as drones—has resulted in their exponential adoption in 

civilian applications such as biosecurity, precision agriculture, mapping and surveying. Examples of 

these automated capabilities include automated ‘home returning’ in compromised mid-fight events 

(e.g., low battery power, strong wind gusts, or loss of communication), reactive collision avoidance, 

autonomous take-off and landing, active object tracking and waypoint-based navigation. However, 

operational hardware and software limitations have restricted a broader use of small UAVs, those 

with a maximum take-off weight (MTOW) less than 13.5 kg, for applications that require onboard 

data processing and rapid decision-making. These time-critical applications are necessary in real-

world emergency environments such as search and rescue (SAR) and disaster monitoring, where the 

identifcation, localisation, and quantifcation of objects (i.e., victims and structures) is vital for frst 

responders to coordinate and prioritise response efforts in affected, or concerned zones. 

In real-world scenarios, collected data, or observations, by small UAVs about the environment 

they are surveying, are limited by imperfections from their sensors. Partial observability is caused by 

physical limitations on their sensor systems, the complex nature of the surveyed environment, object 

detection uncertainty from predictions of object detector models, and the intractability of predicting 

unlimited sequences of future action commands to interact in the world. Although existing research 

in autonomous navigation, utilising small UAVs already proposes approaches to survey partially 

observable environments, little analytic attention has addressed how to model and reduce object de-

tection uncertainty from vision-based models during mid-fight events. Limitations of previous UAV 

framework implementations infer the need to integrate computationally expensive algorithms for 

autonomous decision-making and object detection onboard resource-constrained hardware systems 

contained in small UAVs. 

This research therefore presents a methodology and framework to increase the cognitive levels of 

small UAVs navigating in challenging environments, and under object detection uncertainty using 

a sequential decision process (SDP), vision-based sensors and onboard inference of convolutional 

neural network (CNN) models. This research investigated how to formulate the navigation problem 

using partially observable Markov decision processes (POMDPs), and design a modular and scalable 

framework to compute a motion policy and integrate CNN models for object detection in resource-

constrained hardware onboard small UAVs. The complete UAV system was tested using several SAR 

case studies to locate victims last seen inside surveyed indoor and outdoor environments. A scala-

bility evaluation of the complete system in the feld of planetary exploration was examined by auto-

nomously segmenting and mapping desiccation cracks of dry lake beds, which may contain records 

of past or present life forms shaped as fossils. Experimental results from simulation and real fight 

tests indicate improved cognitive levels of small UAVs when operating in complex environments, as 

the aircraft computed and recorded traversed paths in real-time that allowed a better visualisation 

of partially occluded targets, and increased the confdence level of detected victims and dessication 
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cracks from CNN models. Framework implementations of the UAV system for SAR and planetary 

exploration are validated with sub-2 kg quadrotor UAVs by using three key components: 1) a model-

based POMDP solver to compute the motion policy; 2) a vision processing unit for onboard inference 

of CNN models; and 3) a modular design for payload fexibility in diverse autonomous navigation 

and object fnding applications. 

This research is signifcant for six key reasons: 1) it presents new mathematical methods to model 

and attenuate object detection uncertainty from modern computer vision detectors; 2) the research 

is validated by implementing a POMDP-based framework for autonomous decision-making in par-

tially observable environments from imperfect sensor data; 3) such decision-making means UAVs are 

enabled to navigate autonomously in time-critical applications such as SAR, disaster management, 

surveillance, and planetary exploration; 4) enabling this higher cognitive power in small UAVs also im-

proves the UAV’s decision-making capabilities to collect more accurate statistics of detected objects, 

and increases robustness against noisy detection of potential objects from computer vision algo-

rithms; 5) the robust validation process achieved with the designed UAV system to confrm detected 

objects in real-time when data is complex to interpret for UAV pilots, which reduces human bias 

on scouting strategies; and 6) this research and its outcomes can be extrapolated to any other felds 

and problems that demand real-time decision-making under uncertainty and partial observability of 

studied state variables. 
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Chapter 1 

Introduction 

THIS chapter introduces the concepts behind the research undertaken to enable autonomous 

decision-making for small UAVs operating under environment and object detection uncertainty. 

The sections below discuss the background of autonomous navigation capabilities of small UAVs 

for time-critical applications, the presence of object detection uncertainty in UAV fight operations, 

and current decision-making limitations of small UAVs to autonomously navigate in uncertain en-

vironments. The research problem, which presents the research questions, aims and scope, is then 

presented, followed by the research signifcance and the structure of this thesis. 

1.1 Background 

Unmanned aerial vehicles (UAVs)—also known as drones— are aerial platforms whose use has grown 

exponentially in remote sensing and time-critical applications [1]. UAVs are currently employed in 

felds such as humanitarian relief, disaster monitoring, biosecurity, surveillance, and wildlife moni-

toring [2]–[5]. It is because of their reduced cost and dimensions, extensive adaptability to attach 

sensors and cameras, and user-friendly navigation capabilities including obstacle avoidance, take-

off and landing, and waypoint navigation, that UAVs offer high level of versatility to survey areas of 

interest [6]–[8]. 

UAVs have been used particularly in applications that require onboard rapid decision-making 

and data processing of vision-based payloads (or cameras). These types of survey needs are referred 

to as time-critical applications, and are found in real-world emergency environments such as search 

and rescue (SAR) and disaster monitoring. In these applications, the identifcation, localisation, 

and quantifcation of objects (i.e., victims and structures) is vital for frst responders to coordinate 

and prioritise response efforts in affected, or concerned zones. Operating small UAVs, those with a 

maximum take-off weight (MTOW) of up to 13.5 kg [9], in time-critical applications such as SAR is a 

challenging task as these environments are, in most of the cases, dangerous and unexplored to frst 

responders (i.e., rescue squads). The limitations of the sensors equipped in small UAVs cause partial 

observability in surveyed environments, making it diffcult to detect objects of interest (i.e., victims), 

obstacles, hazardous structures, and to accurately perceive the dynamics and position of the aircraft. 

Partial observability also limits UAVs to predict unexpected situations in real-world environments 

such as unexpected wind gusts, weather events, unstable or weak global navigation satellite system 

(GNSS) signal coverage, and external hazards. Real-world indoor and outdoor environments are 

highly complex areas for UAVs to autonomously, and in some cases even manually navigate, owing 

to the high level of uncertainty. 

1 
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Uncertainty is an issue when planning and monitoring navigation strategies to survey areas with 

UAVs [10]. Ideally, a fully autonomous small UAV should adjust its motion planning strategy while 

interacting with the environment, as shown in Figure 1.1. This iterative interaction between the UAV 

and the environment reduces partial observability and increases the likelihood of obtaining better 

representations of the objects it aims to detect (i.e., victims). Then, modifcations to the motion 

planning might occur when there are changes, or updates, in either the state of environment or 

their objects. Those mid-fight trajectory adjustments enable small UAVs to have a higher level of 

adaptability in uncertain environments, and ultimately, more accurate statistics of any detected 

victims in unattended survey missions. 

Figure 1.1: Autonomous navigation capabilities onboard small unmanned aerial vehicles (UAVs) for obstacle 
avoidance, exploration, and object fnding in partially observable environments. The path planning strategy 
(Path A) is subject to mid-fight updates (Paths B or C) as the UAV interacts with the environment and detects 
potential victims. 

In time-critical applications, real-time streaming of camera frames is essential for human pilots 

to manoeuvre small UAVs, and understand the context and complexity of the mission to coordinate 

successful intervention strategies [11]. However, relying heavily on communication systems to con-

trol the UAV could compromise their integrity, and even trigger a safety risk to others if those systems 

fail [12]. A second issue with overuse of communication systems is when human pilots are reported 

to experience long-term fatigue after prolonged photo-interpreting of streamed frames to search for 

victims and manoeuvre small UAVs [13]. Therefore, incorporating increased cognitive power onboard 

UAVs to autonomously navigate in complex environments under uncertainty could further extend 

their contribution in civilian and time-critical applications. Small UAVs with onboard object detec-

tion capabilities for real-time decision-making dramatically reduce the need of photo-interpreting 

streamed frames, and reliance on human operators to control single and multiple UAVs. 

Recent research on small UAVs for autonomous navigation has shown promising results about 

object fnding under uncertain environments using onboard sequential decision processes (SDPs) 

in simulated environments only [14]–[16], and are yet to be validated in real small UAV scenarios. 

A lack of real-world testing in these systems is mostly due to the following three key challenges of: 
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1) increased diffculties to detect complex objects, such as victims, from streamed camera frames 

exposed to factors such as poor illumination, strong vibrations, and occlusion; 2) performance issues 

when running SDPs under resource-constrained hardware onboard small UAVs; and 3) lack of robust 

navigation systems onboard small UAVs when dealing with object detection uncertainty from partial 

observability and false positive readings from convolutional neural network (CNN) models. These 

three key challenges remain because of the way data is acquired in real-world applications. For 

example, data collected from surveyed environments is partial, non-existent, or prone to inaccuracies 

owing to the limitations of small UAV sensors. Little research has been conducted in the area of 

uncertainty in terms of predictions from vision-based object detectors. Conversely, many approaches 

have focused their efforts to improve confdence metrics from CNN model predictions. No work has 

yet been undertaken on autonomous small UAV decision-making for object detection to model or 

estimate object detection uncertainty. 

The focus of this research therefore is to increase the autonomy level and cognition of small 

UAV systems under environment and object detection uncertainty using vision-based sensors and 

onboard computer vision. This research investigated how the modelling of an SDP and its execution, 

onboard small UAVs, improves their robustness to deal with high levels of environment and object 

detection uncertainty. 

1.1.1 Time-critical Applications 

Employing small UAVs with onboard cognition to interact with surveyed environments for humanita-

rian relief and SAR has been extensively explored. The key goal for frst responders is to enable quick 

localisation, identifcation, and quantifcation of victims, and to identify and prioritise an emergency 

response in the affected zones. Traditionally, small UAV operators photo-interpret real-time footage 

from cameras attached to such drones to then plan and decide on the next sequence of navigation 

commands [17]. However, the prolonged use of these visual systems is claimed to produce fatigue 

and sensory overload. Despite recent advances being made to small UAVs to more autonomously 

navigate for SAR purposes [16], [18], [19], there are still three key challenges, namely, the lack of: 

1) solid tested platforms in real-world environments; 2) methods to identify, locate, and quantify 

non-trivial objects (i.e., victims); and 3) autonomous navigation capabilities running onboard small 

UAVs to interact in environments and increase the level of confdence in the detection of objects from 

vision-based models. 

Disaster monitoring is the rapid assessment of economic, environmental and humanitarian losses 

in affected urban, peri-urban and rural regions, and is fundamental to attenuate the impacts of natu-

ral disasters (e.g., landslides, foods, volcanic eruptions, wildfres, nuclear disasters and earthquakes). 

Previous research has also identifed limitations of small UAVs to deal with unexpected mid-fight 

events in disaster monitoring tasks because of the lack of autonomy [20], [21]. Most UAV approaches 

for disaster monitoring require the use of time-consuming data processing techniques post-fight, 

such as data fltering, ortho-rectifcation, image mosaicking, and generation of elevation models 

(e.g., digital surface model (DSM) and digital elevation model (DEM)) [22]. Since many fight opera-

tions are limited in terms of providing quick insights about the status of surveyed areas or presence 

of objects of interest, small UAV technology remains limited for broader scale operations. 

The capabilities of small UAVs to make a decision autonomously for most applications in uncer-

tain environments is limited. While these decision-making problems can be solved using SDPs, where 

the small UAV decides its next fnite sequence of actions (e.g., update the heading of the UAV, navigate 

to a new position waypoint, hover itself or track a static or dynamic object mid-fight) based on data 
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collected from the environment, limited computing power in resource-constrained hardware adds 

another layer of diffculty to simultaneously run motion planning algorithms, real-time streaming of 

camera frames, and onboard inference of CNN models. Therefore, small UAV frameworks that enable 

autonomous decision-making under uncertainty and partial observability onboard small UAVs need 

to be developed and validated. 

1.1.2 Types of Object Detection Uncertainty 

Partial observability in UAV fight operations is the limitation of obtaining complete and accurate in-

formation regarding: 1) objects in the environment expected to be identifed, located and quantifed; 

2) the UAV itself (e.g., data about its location, pose and dynamics); and 3) the state of the environment. 

Partial observability, an ever-present issue in real-world applications causing uncertainty in surveyed 

environments, occurs mostly because of imperfect sensor readings equipped in small UAVs, poor 

visual representations of objects from streamed camera frames, suboptimal surveying altitudes, and 

external disturbances from the environment. Factors that can cause object detection uncertainty 

during UAV surveys are partial or entire occlusion of the object with taller obstacles, viewpoint and 

scale variations, poor illumination conditions, and excessive vibrations in the UAV frame, as illus-

trated in Figure 1.2. 

Figure 1.2: Factors that can induce object detection uncertainty during UAV surveys in outdoor environments. 
These factors are caused by limitations such as imperfect sensors readings, poor visual representations from 
streamed camera frames, suboptimal surveying altitudes, and external disturbances from the environment. 

The absence of absolute or holistic visual representations of objects from vision-based cameras 

and computer vision algorithms onboard UAVs introduce uncertainty, which can be classifed as 

follows: 

• Identifcation: limitations are those of recognising a specifc identifcation property of the 

object. For instance, identifcation uncertainty on detected victims include, but are not limited 

to, age, gender, and health conditions. Identifcation uncertainty could also cover situations 
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where various objects are detected, but it becomes challenging discriminating against assigning, 

or labelling each detected object with the correct class (e.g., mislabelling victims with trees, 

chairs, bottles, etc.) 

• Localisation: of objects becomes an uncertainty in many fight operations using small UAVs 

due to the limited extent of vision-based sensors to capture images that represent the extent of 

a scene, also known as feld of view (FOV). These limitations are common in mapping, surveil-

lance and other object fnding applications in cluttered and challenging environments. The 

location of victims in SAR operations, for example, is challenging when vision-based sensors 

are unable to cover specifc FOV confgurations (e.g., viewpoints using non-nadir or side-by-

side settings) or when victims are partially occluded by an urban structure or taller obstacles, 

the effects of the disaster situation (e.g., fre smokes, earthquakes, foods) or natural events 

(e.g., fog, cloudy and wet conditions). Likewise, object location uncertainty in surveillance 

operations includes unexpected changes in object pose and behaviour (dynamics), occlusion 

and even loss of object perception while tracking it. 

• Quantifcation: as an uncertainty applies where objects are partially occluded among them-

selves or between themselves and environmental obstacles, or environmental factors that 

distort the image quality of vision-based sensors. Quantifcation is important in humanita-

rian relief operations, for instance, when rescuers require prioritising emergency response by 

counting victim numbers. The collection of these statistics determines the most critical zones 

for immediate intervention. 

• Morphology: as an uncertainty occurs when the surveying application requires collecting the 

morphological properties of objects, namely length, volume, or height. Such properties in SAR 

operations could help understand complementary rescue conditions and defne resources and 

processes needed to assist victims. 

Another source of uncertainty arises when computer vision algorithms, for object detection re-

turn incorrect data. Developed algorithms use varied strategies to detect objects [23], such as: 1) 

classical image processing pipelines (e.g., kernel fltering, binary and colour thresholding, edge and 

contour detection, and morphological operations); 2) feature extraction (e.g., SIFT, SURF); 3) adap-

tive fltering (e.g., Kalman flters); 4) visual odometry (e.g., simultaneous localisation and mapping 

(SLAM)); and 5) deep learning (e.g., Region-based and Single Shot Detector CNNs). Regardless of 

the algorithms and methods used, object detector models are not exempt from uncertainty by their 

given predictions (or inference). In fact, detection errors may occur when sensor measurements lack 

accuracy and precision. Formulating and implementing SDPs for autonomous decision-making in 

small UAVs should consider uncertainty from vision-based object detectors, and adapt their motion 

strategy when output detections contain substantial imprecisions. With increased cognitive power for 

autonomous navigation, small UAVs can interact with surveyed environments to confrm or discard 

positive detections from CNN models, rather than spending signifcant effort and resources collecting 

new data and retraining such models. 
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1.2 Research Problem 

First responder resources for SAR and disaster management are critical for emergency services to 

react effectively and diminish fatalities whenever possible. Natural disasters are events claim human 

lives globally and annually, and the 2011 and 2018 Queensland foods are examples of events that 

impacted Australia socially and economically. Emergency events can also be triggered from accidents, 

with people lost in the bush, river bays and beach shores. An average of 38,000 people are reported 

missing in Australia annually, and from this number, 720 are never found and 2600 are reported (long-

term) missing for more than three months [24]. The potential for intelligent surveying technologies 

such as small UAVs is predicted to accelerate situational awareness in SAR operations and, therefore, 

improve decision-making to optimise intervention strategies and increase the likelihood of rescuing 

victims. 

The inclusion of robotic technologies for disaster monitoring and SAR has positively impacted 

rescue efforts by achieving higher success in their operations [25]–[28]. Such rescue efforts could 

be even more successful when researchers address the several challenges that still persist [7]. Most 

small UAVs are limited in terms of collecting absolute data, or observations of surveyed environments 

and objects within them, due mostly because of imperfect aircraft sensor systems, reduced informa-

tion bandwidth, high complexity to inspect areas with partly occluded objects, and object detection 

uncertainty from computer vision algorithms. The design of UAV frameworks for autonomous on-

board decision-making in time-critical and emergency environments is a challenging problem in the 

resource-constrained hardware of small UAVs. 

The benefts of formulating problems with SDPs on UAV exploration and object fnding for auto-

nomous decision-making under uncertainty have shown the potential of small UAVs to interact in 

cluttered and challenging environments with unpredictable changing events, and to localise, iden-

tify and quantify objects under partial observability. What it is required to make small UAVs work 

effciently and effectively is to formulate and implement SDPs under object detection uncertainty 

running onboard resource-constrained hardware, and validation with real UAV fight tests. That is, 

the modelling of object detection uncertainty from vision-based sensors. Using an SDP and frame-

work capable of running in sub-2 kg UAVs for time-critical applications will be applicable for small 

UAVs to autonomously interact and operate effectively, and inspect zones to confrm or discard the 

identifcation and location of potential objects under high levels of environment and object detection 

uncertainty. This research therefore aims to create a fully autonomous UAV system that can operate 

in real-world environments under uncertainty and partial observability. 

1.2.1 Research Questions 

The two primary research questions (RQs) and fve sub-questions are as follows: 

Research Question 1 

How can an autonomous navigation problem for small UAVs be formulated as a sequential decision 

process (SDP) under high levels of environment and object detection uncertainty, so it can account for 

a solution that works in real time for time-critical applications? 

The three sub-questions therefore are: 

1.1. What level of artifcial cognitive learning and uncertainty modelling is required to identify, 
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localise or quantify objects positioned in cluttered and challenging scenarios using small 

UAVs and vision-based object detectors? 

1.2. Which factors defne the complexity of an SDP so as to reduce object detection uncertainty 

from collected environment observations using vision-based sensors in time-critical appli-

cations? 

1.3. What are the modelling considerations in a formulated SDP that enable the scalability of 

a UAV framework for autonomous navigation for a range of diverse vision-based payloads, 

and remote sensing application needs beyond object detection? 

Research Question 2 

How can the decision-making framework best be designed to that it can enable small UAVs to explore 

and fnd objects, so as to automate fight surveys and data collection campaigns in environments under 

uncertainty and partial observability? 

The two sub-questions therefore are: 

2.1. How can computationally intensive tasks such as online SDP algorithms, and onboard 

inference of CNN models for object detection and segmentation, be integrated to run 

simultaneously under resource-constrained hardware in sub-2 kg UAVs? 

2.2. What are the design criteria to scale a UAV framework for autonomous navigation under 

environment and object detection uncertainty to other remote sensing applications that 

require autonomous decision-making capabilities onboard small UAVs? 

1.2.2 Aims of the Study 

The overall aim of this research is to increase the cognitive power of small UAVs by incorporating 

an SDP into resource-constrained hardware, so the small UAV can navigate autonomously under 

environment and object detection uncertainty. This aim can be achieved through the following six 

objectives: 

1. Model a system architecture for small UAVs using SDPs for autonomous navigation in environ-

ments with high levels of environment and object detection uncertainty. 

2. Deploy an SDP onboard a small UAV for autonomous motion planning and interaction with 

environments under uncertainty and partial observability in real-time. 

3. Deploy vision-based sensors, and object detection and image segmentation CNN architectures 

for onboard inference in embedded systems present in sub-2 kg UAVs. 

4. Develop a simulation environment that provides high-fdelity performance metrics to evaluate 

the potential of developed SDPs for real fight tests using hardware mounted in sub-2 kg UAVs. 

5. Design and validate a modular sub-2 kg UAV framework robust against the various types and 

complexity levels of object detection uncertainty present during fight surveys. 

6. Apply the design characteristics of the UAV framework in multiple real-world applications that 

require real-time object detection and onboard data processing in small UAVs. 
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1.2.3 Scope 

The eight items listed below identify the scope of this research: 

• Number of objects: multiple instances of objects could visually appear in an image frame. 

This research limited the design of the SDP to reduce levels of object detection uncertainty 

assuming a single object appears in processed frames. If a frame depicts multiple objects, the 

object detector will only provide detection metrics from the object with the highest level of 

confdence and will discard others. 

• Object dynamics: this research evaluated levels of object detection uncertainty with static, and 

not dynamic objects nor those with object tracking capabilities. 

• Situational awareness: UAV fight operations are rarely conducted under blind conditions. 

Instead, a minimum set of situational awareness conditions are commonly known to human 

pilots before operating UAVs in indoor and outdoor environments. During the experimental 

phase, initial conditions known beforehand included the fight extent (or geo-fence), minimum 

and maximum surveying altitudes, the takeoff location of the UAV and the three-dimensional 

(3D) occupancy map of the environment. 

• Environmental setup: UAV fight operations were conducted mostly on fat terrains in indoor 

and outdoor environments. For safety and economic reasons, this research validated UAV 

framework implementations to daytime tests using red, green, blue (RGB) cameras as vision-

based payloads. Chapter 6, however, describes preliminary fight tests results using thermal 

cameras to demonstrate their suitability in poor illumination conditions over high-resolution 

RGB cameras. 

• Selection of SDP: this research explored and exploited the performance capabilities of par-

tially observable Markov decision processes (POMDPs) and model-based POMDP solvers, only. 

Details on the selection criteria of POMDPs against other algorithms is established in Chapter 2. 

• Collection of observations: observations of the environment came from real-time processing 

outputs of streaming of vision-based sensors and convolutional neural network (CNN) archi-

tectures for object detection and image segmentation. The UAV framework established in this 

research captured vision-based observations from a singular camera, only. Observations of the 

local position of the UAV are sourced from internal position estimations of the UAV autopilot. 

• UAV hardware: only quadrotor UAVs were used in this investigation. The overall weight of the 

UAV did not exceed 2 kg, and the maximum diameter of the aircraft was equal to or less than 

0.5 m. 

• UAV software: current programming software solutions were constrained to open-source soft-

ware to ensure ease of access and reproducibility in future research. The selection of software 

autopilots did not include commercial solutions from manufacturers such as DJI and Parrot. 

1.3 Research Signifcance 

The majority of real-world indoor and outdoor environments are highly dynamic, complex, and 

full of uncertainties. Enabling autonomous decision-making for exploration and object fnding in 

environments under uncertainty will enhance the demand for applications with limited support [29], 



9 Chapter 1. Introduction 

including surveillance operations that require rapid response and deployment of resources, such as 

SAR, disaster monitoring, humanitarian relief, biosecurity, and border protection. Enabling a higher 

cognitive power will improve decision-making capabilities of small UAVs to collect more accurate 

statistics of detected objects despite imperfections from vision-based sensors and computer vision 

algorithms implemented in the application. The contribution of this research will beneft validation 

processes of UAV systems for real-time object fnding when data is complex to interpret for human 

pilots, and reduce human bias on scouting strategies. 

There are remote sensing felds and fight operations where optimisations on fight campaign 

times for onboard and real-time object detection might not be completely relevant, especially if post-

fight data pipelines are needed. Example applications include soil analysis studies using DEMs, 

multi- and hyper-spectral image classifcation and mapping through ortho-rectifcation and geo-

referenced mosaics. However, applications that demand real-time analysis of collected airborne data 

will be highly benefted. Specifcally, time-critical tasks that operate under vision-based cameras, 

where processing outputs are critical for rapid intervention in surveyed environments. 

The outcomes of this research are not expected to restrict their use in other felds for autonomous 

decision-making in small UAVs, such as: surveillance (tactical Police surveillance [30]); biosecurity 

(automatic and rapid detection of biosecurity breaches [31], [32] in small UAV operations [4], [5], [33], 

[34]); wildlife monitoring (detection of endangered species [3], [35]); and aerospace (autonomous 

take-off and landing in static [36]–[38] and dynamic environments [39]–[42]). 

1.4 Thesis Outline 

This thesis presents a collection of scientifc papers across fve chapters, 3 to 7. These publications 

are listed as follows: 

• (Chapter 3): J. Sandino, F. Vanegas, F. Gonzalez, and F. Maire, “Autonomous UAV navigation for 

active perception of targets in uncertain and cluttered environments,” in Aerospace Conference, 

Big Sky, MT, USA: IEEE, Mar. 2020, pp. 1–12. DOI: 10.1109/AERO47225.2020.9172808. 

• (Chapter 4): J. Sandino, F. Vanegas, F. Maire, P. Caccetta, C. Sanderson, and F. Gonzalez, “UAV 

framework for autonomous onboard navigation and people/object detection in cluttered in-

door environments,” Remote Sensing, vol. 12, no. 20, p. 3386, Oct. 2020. DOI: 10 . 3390 / 

rs12203386. 

• (Chapter 5): J. Sandino, F. Maire, P. Caccetta, C. Sanderson, and F. Gonzalez, “Drone-based 

autonomous motion planning system for outdoor environments under object detection uncer-

tainty,” Remote Sensing, vol. 13, no. 21, p. 4481, Nov. 2021. DOI: 10.3390/rs13214481. 

• (Chapter 6): J. Sandino, P. Caccetta, C. Sanderson, F. Maire, and F. Gonzalez, “Reducing object 

detection uncertainty from rgb and thermal data for UAV outdoor surveillance,” in Aerospace 

Conference, Big Sky, MT, USA: IEEE, Mar. 2022, (accepted). 

• (Chapter 7): J. Sandino, J. Galvez-Serna, N. Mandel, F. Vanegas, and F. Gonzalez, “Autonomous 

mapping of desiccation cracks via a probabilistic-based motion planner onboard UAVs,” in 

Aerospace Conference, Big Sky, MT, USA: IEEE, Mar. 2022, (accepted). 

https://doi.org/10.1109/AERO47225.2020.9172808
https://doi.org/10.3390/rs12203386
https://doi.org/10.3390/rs12203386
https://doi.org/10.3390/rs13214481
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The thesis is structured following Table 1.1: 

Table 1.1: Thesis structure and chapter (Ch.) contributions to research questions (RQs) from published papers. 

Ch. Topic Follows RQs Contributions 
2 Literature review N/a N/a Top-down review of autonomous navigation 

methods for small UAVs, SDP methods that 
model uncertainty and partial observability, 
and current sub 2 kg UAV frameworks for ex-
ploration and object fnding. 

3 Problem formulation 
indoors (simulation) 

Ch. 2 1.1, 2.1 POMDP problem formulation for victim fnd-
ing in GNSS-denied environments using 
small UAVs. Modelling of object detection 
uncertainty at various positions and victim 
orientations. System tested using software 
in the loop (SIL). Onboard inference of CNN 
model achieved via a vision processing unit 
(VPU). 

4 UAV framework out-
doors (real tests) 

Ch. 3 1.1, 1.2, 2.1 Design of autonomous navigation frame-
work for cluttered indoor environments 
using a sub-2 kg UAV. Framework validated 
with hardware in the loop (HIL) and real 
fight tests. UAV system architecture design 
and replica of real-world environments from 
airborne UAV data bridged the gap between 
simulated and real fight tests. 

5 Problem formulation 
outdoors (simulation) 

Ch. 3, 4 1.1, 1.2, 2.2 Extended POMDP problem formulation for 
exploration and victim fnding in outdoor en-
vironments using small UAVs. Novel fight 
mode design (i.e., hybrid mode) to inspect 
areas and confrm presence of potential de-
tected victims. System validated in HIL and 
with preliminary real fight tests. 

6 UAV framework out-
doors (real tests) 

Ch. 4, 5 1.3, 2.1, 2.2 Extended validation of UAV framework for 
autonomous exploration and object detec-
tion in outdoor environments with real tests. 
Preliminary scalability test of modular frame-
work using RGB and thermal cameras on-
board a sub-2 kg UAV. 

7 System scalability 
(real tests) 

Ch. 6 1.3, 2.1, 2.2 Scalability study of established UAV frame-
work to autonomously map desiccation 
cracks from dry lake beds. Modularity of UAV 
framework validated by integrating a novel 
CNN model for image segmentation, and an 
OpenCV AI kit (OAK)-D camera to simulta-
neously stream RGB frames and perform on-
board CNN inference. 

8 Conclusions Ch. 3 — 7 N/a Research fndings, recommendations, and 
future work. 



Chapter 2 

Literature Review 

STRAGEGIES to mitigate economic, environmental, and human loss, are critical in emergency sit-

uations such as natural disasters, terrorist activities and crime, war conficts, and severe weather 

events [43], [44]. Of particular concern disaster monitoring and search and rescue (SAR) contexts, is 

the collection of information to understand the state of affected zones and the location of any victims 

as fast as possible [45], and it is “the period within 12 to 24 hours of a distress incident is the most 

critical for the recovery of survivors” [46]. Rapid data collection about the state of affected areas, 

the situational awareness, is therefore critical for SAR squads or frst responders to coordinate and 

prioritise intervention strategies, and increase the likelihood of fnding and rescuing victims. 

Unmanned aerial vehicles (UAVs) are one key technology to establish situational awareness during 

emergency situations, with their use including surveying applications related to SAR or disaster moni-

toring, as well as remote sensing in the felds of precision agriculture, cinematography, environmental 

monitoring, and biosecurity [2]–[5], [34], [35]. Compared with manned aircraft solutions, UAVs offer 

a considerably more affordable, fexible and faster scouting capabilities due to advances in microelec-

tronics, sensors and payload portability, computer vision and image processing, and autonomous 

navigation capabilities. Figure 2.1 for example illustrates UAV capabilities of surveying challenging 

and dangerous environments for rapid assessment of areas impacted by distressing events. 

(a) 

11 
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(b) 

Figure 2.1: Small UAVs establishing situational awareness of challenging and dangerous environments in (a) 
wild/bush fres and (b) disaster management. Source: [47]. 

Diverse UAV designs are available to variety of remote sensing applications. Historically manufac-

tured for the military and defence sector, it is the advances in electronics and microelectronics with 

compacted and affordable sensors, actuators, microcontrollers, that has expanded the use of UAVs 

for civilian applications. In fact, it is the small UAVs, with a maximum take-off weight (MTOW) equal 

of less than 13.5 kg [9] (Table 2.1), that are being used in distress events (or time-critical surveying 

applications), as well as industry and research communities. 

Table 2.1: Classifcation of UAVs based on their maximum take-off weight (MTOW) and ground impact risk TGI, 
defned as the minimum time between ground impact accidents. 

UAV Name Prefx MTOW TGI 

Micro 
Mini 
Small 
Light/ultraweight 
Normal 
Large 

Less than 1 kg 
Up to 1 kg 
Up to 13.5 kg 
Up to 242 kg 
Up to 4332 kg 
Over 4332 kg 

102 

103 

104 

105 

106 

107 

The capacity of small UAVs to operate in remote, dangerous and cluttered environments has be-

come the focus of the robotics research community, industry, and defence sectors [23]. However, 

their use in real-world emergency events remains restricted by six key operational limitations [1], 

[48], including: (a) onboard computing power; (b) endurance; (c) payload weight; (d) power; (e) sen-

sor resolution and image quality; and, (f) cognition capabilities in stochastic situations. Recent 

hardware-wise developments including the release of more powerful sensors, embedded computing 

processors [49] and increased capacity of power banks are likely to improve UAV capacity. 

Time optimisation in time-critical surveying applications demand UAVs to be capable of auto-

nomously navigating and detecting structures and victims in real time. Advances in autonomous 

navigation, as in those available for commercial small UAVs include automated home return at cri-
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tical battery levels, reactive collision avoidance, autonomous take-off and landing and active object 

tracking [6], [7]. Nevertheless, the development of autonomous decision-making onboard small UAVs 

in environments with high levels of uncertainty, such as SAR and disaster monitoring, is a far more 

challenging problem [48]. Indeed, decision-making capabilities of small UAVs are still limited when 

dealing with mid-fight events, path planning and obstacle avoidance under unexplored environ-

ments (i.e., SAR applications), or object fnding under partial observability [1], [50]. A further chal-

lenge for the broader use of small UAVs is defned by computational power restrictions in resource-

constrained hardware for onboard execution of algorithms such as object detection, path planning, 

obstacle avoidance and streaming of high-resolution camera frames [51], [52]. Small UAVs which can 

make decisions to reduce partial observability and react in real time to changes in the environment 

are likely to perform effectively in real-world scenarios [53], [54], highlighting the need for further 

research on decision-making under uncertainty for autonomous navigation onboard small UAVs. 

This chapter critically reviews the literature regarding autonomous decision-making onboard 

small UAVs to navigate under environment and object detection uncertainty. The literature review is 

organised as follows: Section 2.1 discusses high-level techniques for autonomous small UAV decision-

making; Section 2.2 describes small UAV navigation methods under unstructured (or stochastic) 

environments from which learning-based methods are chosen; Section 2.3, presents the sequential 

decision processes (SDPs) under the framework of reinforcement learning; Section 2.4 presents the 

methods that consider and model uncertainty and partial observability on SDPs; A key component of 

UAV autonomy is the development and validation of a framework to implement SDPs in real-world 

applications. The focus of this research is on converging in a modular and scalable framework design 

in resource-constrained hardware contained in small UAVs, specifcally, sub-2 kg UAVs; Section 2.5 

reviews existing framework approaches to execute formulated SDPs onboard small UAVs in real time; 

Section 2.6 presents the fnal analysis, and identifes the research problem and the research questions 

(Section 1.2.1) and thesis contributions (Chapters 3 to 7). 

2.1 Autonomous Navigation Methods in UAVs 

Research to develop the autonomous navigation systems for UAVs typically involves the combination 

of research areas, specifcally UAV motion control, path planning and obstacle avoidance. Literature 

on remote sensing and navigation for UAVs in environments with and without the source of global 

navigation satellite system (GNSS) signal is extensive [1], [55], with Table 2.2 presenting these navi-

gation methods in distress events using UAVs according to the categories of: (a) graph-based search; 

(b) sampling-based; (c) potential felds; (d) optimisation-based; (e) swarm-optimisation-based; and, 

(f) learning-based algorithms. 

Graph-based search algorithms represent surveyed environments as grids, where cell values could 

be declared as occupied or free. Popular methods include A∗ , LazyTheta∗ and D∗-lite, algorithms 

that provide fast searching abilities and can be implemented online. However, recent works have 

shown that graph-based search methods excel under well-defned, small surveying areas, though the 

location of the object must be assumed in advance, rendering these methods unsuitable in small UAV 

applications where the object location is unknown. 

Sampling-based algorithms evaluate sets of graph paths as collision-free. Samples of free spaces 

that connect the start and end locations are acquired. These methods follow a probabilistic approach, 

so their solutions are approximations of the optimal path, and therefore suitable for complex envi-

ronments. Popular algorithms used for small UAV applications include probabilistic road map (PRM), 

and rapidly exploring random trees (RRT). Sampling-based algorithms require the location of an 
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Table 2.2: Classifcation approach of autonomous navigation methods for UAVs, adapted [10]. PRM: probabilistic 
road map, RRT: rapidly exploring random trees, APF: artifcial potential felds, MIQP: mixed-integer quadratic 
programming, BLP: bi-level programming, PSO: particle swam optimisation, GA: genetic algorithms, DRL: deep 
reinforcement learning, and MDP: Markov decision processes. 

Method Examples Advantages Limitations 

Graph-based 
A* 
D*-Lite 

Online implementation, 
fast convergence 

Optimal for small areas only 

Sampling-based 
PRM 
RRT 

Suitable for complex environments, 
fast convergence 

Sub-optimal solution 

Potential felds APF 
Simple implementation, 
fast convergence 

Sub-optimal solution 

Optimisation-based 
MIQP 
BLP 

Optimal solutions under 
obstacle-dense environments 

Complex to implement, 
high number of parameters 

Swarm-optimisation 
PSO, 
Ant Colony 

Effcient and fast for 
multiobjective problems 

Sensitive to parameter tuning 

Learning-based 
GA, 
DRL, 
MDP 

Suitable for multiobjective 
problems 

Require training phase and 
full state observability 

object to be assumed, making them unsuitable for autonomous navigation in environments with 

object location uncertainty such as disaster monitoring and SAR applications. 

Artifcial potential felds (APFs) are used in terms of potential felds, where the small UAV or agent, 

is represented as a moving particle which experiences attraction potential from the object to fnd 

(or track) and repulsive potential from obstacles. While APFs are relatively simple to implement 

and converge fast, they are likely to fall under local minima as potential felds from several obstacle 

locations could trap the agent. 

Optimisation-based algorithms estimate optimal path planning using cost functions and non-

linear optimisations to provide optimal trajectories on obstacle-dense environments. However, re-

searchers applying optimisation-based methods require advanced modelling skills to replicate the dy-

namics of surveyed environments. The number of hyperparameters to tune, and computational costs 

are directly proportional to the complexity of the formulated problem. Some use of optimisation-

based algorithms in UAVs include mixed-integer quadratic programming (MIQP) and mixed-integer 

semi-defnite programming (MISDP). 

Swarm-optimisation-based methods have been used extensively for small UAV path planning, 

namely particle swarm optimisation (PSO), ant and bee colony, and memetic algorithms, as they are 

effcient and fast to execute in resolving multi-objective problems, though are sensitive to hyperpa-

rameter tuning. 

Learning-based algorithms are suitable for multi-objective and highly complex problems and 

include genetic algorithm (GA), artifcial neural networks applied to potential feld methods, Markov 

decision process (MDP) solvers, and deep reinforcement learning (DRL). These algorithms normally 

require a training phase and full state observability before implementation onboard UAVs. However, 

recent use of MDPs and partially observable Markov decision processes (POMDPs) to solve navigation 

problems for small UAVs improved the issue of motion planning under partial state observability. 

Overall, the methods to plan paths for autonomous small UAVs are diverse, and selecting the best 

algorithm for exploration and object fnding might be constrained to the needs and situational aware-

ness of the surveying application, and available capabilities of UAVs used. It is swarm-optimisation 

and learning-based methods that are the best choice based on their capacity to solve multi-objective, 

and high complexity problems [56]. Formulating problems which account for partial observability 

and mitigation needs of object detection uncertainty in time-critical contexts, are required to develop 

the autonomous navigation of small UAVs in real-world environments. The following section presents 



15 Chapter 2. Literature Review 

an analysis of these methods for autonomous UAV navigation in uncertain environments. 

2.2 Autonomous Navigation for Small UAVs in Uncertain 
Environments 

The implementation of online navigation methods in uncertain environments is essential for fully-

autonomous small UAV operations [55]. Small UAV navigation can be seen as a dynamic multi-

objective optimisation problem, so algorithms based on GAs, PSO, bayesian networks (BNs), fuzzy 

logic (FL), partially observable Markov decision processes (POMDPs) and DRL have been widely 

used in robotics research. Nevertheless, the type and amount of data required to solve a navigation 

problem for small UAVs have motivated recent research efforts to use learning-based rather than 

optimisation-based methods, which tend to require complete data (or full observability) of surveyed 

environments to avoid converging local optima [19], [56]. However, assuming full observability of the 

environment is unrealistic in real-world, time-critical, and unexplored environments. 

Learning-based methods for autonomous navigation using small UAVs present similar issues. 

Deep learning models, for example, are excellent where there is a rich amount and variety of data 

sets and well-defned tasks [10], [48], [56]–[58]. The potential of DRL under these conditions has 

been demonstrated by case studies such as Alpha-Go [59] and autonomous small UAV navigation in 

simulation and controlled indoor environments [16], [60]. In contrast, DRL demands resource-rich 

simulation environments to train DQNs and subsequently output a motion policy that is executed by 

the UAV mid-fight [61]. This training process occurs offine, or prior to any real fight tests, and the 

high training and execution times are not always well documented. As model tuning using DRL is un-

affordable using real hardware, the reliance of simulated environments restrict validation procedures 

of DRL-based methods for their use in real-world small UAV operations [56], [62], [63]. 

Model-based MDP solvers and their extensions are another type of learning-based algorithms, 

where the learning strategy is on the search of a motion policy by formulating the navigation problem 

as a sequential decision process (SDP), the mathematical framework of MDPs, and explicit modelling 

of the environment and dynamic variables of concern. The advantage of using MDPs and POMDPs 

over DRL-based methods is that they do not always require feature-rich simulated environments to 

calculate offine motion policies as these calculations now depend on the explicit model declaration 

of the environment, and the availability of online policy calculations, which could improve a UAVs 

traversed paths if it collects more observations of the environment mid-fight. An advanced under-

standing and the capability of mathematically modelling the dynamics of the environment is required 

in model-based learning methods. 

Previous research demonstrated the possibilities of using model-based methods with online 

POMDP solvers for autonomous path planning, obstacle avoidance, object detection and tracking 

in GNSS-denied environments[64]–[66]. The unresolved challenges continue to be on designing 

effcient online SDP solvers for problems that have an elevated number of actions and states [14], 

[53], supporting algorithm validation in real-world scenarios using small UAVs [67]. Research is still 

necessary to further address the computational burden of these algorithms in hardware-constrained 

hardware [68], and develop model-based online SDP solvers running onboard small UAVs in environ-

ments with high levels of uncertainty and partial observability [57], [58]. 
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2.3 Sequential Decision Processes (SDPs) 

Real-world fight operations using small UAVs are dynamic, complex, partially observable, and there-

fore, uncertain. The process of increasing cognitive capabilities in autonomous navigation for small 

UAVs under these environments can be catalogued as a decision-making problem so the UAV can 

fnd adequate sequences of actions that maximise the probabilities of reaching the fight goal of 

exploration, object fnding and tracking, or inspection of specifc region of interests (ROIs) such as de-

tailed scanning of structures or confrmation of potential detected victims. UAV navigation problems 

are normally denominated multi-objective, as the selection of sequential actions are not only cons-

trained by achieving the primary surveillance goal, but also from the indirect interaction rules with 

the environment of obstacle avoidance, collision prevention, maximum fying distance, maximum 

and minimum survey heights, and maximum fight times. 

Based on the premise that environments are dynamic, the set of chosen actions should not only 

predict possible outcomes, but also evaluate changes in the environment. Therefore, there is a strong 

interaction between the small UAV and the environment, where each action taken by the aircraft at a 

given time t should be monitored using fed back data about the state of environment in the shape of 

observations. Observations collected by UAVs are mostly acquired from sensors used by the autopilot, 

and attached payloads such as visible and near infrared cameras, microphones, spectrometers, light 

detection and ranging (LiDAR), and range sensors. The aim of collecting observations is to deduce 

the actual state of the surveyed environment, the UAV itself, and the objects to be identifed, located, 

or quantifed. Every action taken results in a change of state. A technique that gives quantitative 

values to taken actions is called the reward which means reward values will ultimately depend on the 

current state and the expected resulting state after the UAV executes an action. Here, the small UAV 

should decide on the next taken action at time t + 1 that returns the highest expected reward, and 

increase the chances of accomplishing the goal. This optimisation problem basically aims to defne a 

sequence of actions that maximise those rewards in the long run. 

The research presented here in this thesis used a framework based on MDPs, which follows the 

problem description and optimisation needs of fnding an optimal sequential set of actions for every 

declared system state that allow the UAV to achieve its navigation mission. The following section 

presents an overview about the mathematical formulation of MDPs, followed by an introduction to 

POMDPs (Section 2.4), a generalisation of MDPs that introduces partial observability in its defned 

states. 

2.3.1 Markov Decision Processes (MDPs) 

An MDP is a mathematical framework to formulate sequential decision-making problems under 

uncertainty [53], assuming the state of the environment is fully observable. In the context of UAVs, 

for example, fully observability implies that the small UAV, formally called the agent in MDP theory, 

receives complete and accurate data about the state of the environment through its sensors or vision-

based outputs such as object detection, semantic segmentation, or simultaneous localisation and 

mapping (SLAM). The aim of an MDP is to fnd a set of sequential actions needed to reach a goal, 

characterised by the current state of the environment. The state of the environment S is encoded with 

an array of variables that are relevant to the problem. Variables that can encode S in UAV navigation 

problems include the position of the UAV, position of the object to be found, and fags that indicate 

whether the UAV has collided with an obstacle, and if the object has been detected. 

Actions A encoded in an MDP are limited to the operational abilities of the agent. Variables en-
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coding low-level actions include position or velocity commands to move the UAV forward, backward, 

left, right, or change its direction clockwise or counterclockwise. Every time the agent takes an action 

a ∈ A a transition to a new state s ∈ S is triggered. After this transition, the agent receives a reward 

r = R(s, a) from the environment in an interaction depicted in Figure 2.2. 

Agent (i.e., small UAV) 

Environment 

action 
at 

state 
st 

st+1 

πt 
rt 

R(s, a) 

Figure 2.2: Chain diagram of actions, states, and rewards between the agent and the environment in MDPs. An 
action at ∈ A taken by the agent triggers a transition to a new environment state st+1 ∈ S. The agent receives a 
reward rt = R(s, a) from the environment. 

An MDP is a stochastic process that follows the Markov property, where future state sequences will 

only depend on current states and are conditional independent of past state sequences, as defned in 

Equation (2.1): 

P (st+1 | s1, s2, · · · , st−1, st ) = P (st+1 | st ) . (2.1) 

MDPs are formally defned by the tuple 〈S, A,T,R,γ〉 where: 

• S is a fnite set of states. 

• A is a fnite set of actions. ¡ ¢ ¡ ¢′ • T is the state transition function, T s, a, s = P s ′ | s, a . 

• R is the reward function R (s, a) = E (r | s, a). 

• γ is the discount factor γ ∈ [0,1]. 

The discount factor γ weights the signifcance of immediate rewards over long-term rewards. Small 

values of γ increase the importance of immediate rewards whereas high values increase the impor-

tance of long-term rewards. The solution of an MDP is represented with a policy π, which maps 

states to actions that allow the agent accomplish its goal [54]. Some examples of UAV navigation goals 

include, but are not limited to, object fnding, exploration and mapping, and collision prevention 

during safe landing. 

π : S → A. (2.2) 

The optimal solution of an MDP is to fnd the policy that maximises the expected return G (or cumu-

lative reward). G is defned using Equation (2.3): 

∞X 
Gt = rt+1 + γrt+2 +·· · = γi rt+i+1. (2.3) 

i=0 

The goal of the discount factor γ is to keep the return bounded, as Equation (2.3) contains a sum with 

an infnite number of terms. Owing to uncertainty in the environment, the expected return G given a 

state s ∈ S is calculated using a value function v(s), as shown in Equation (2.4): 
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v(s) = E (Gt | s = st ) . (2.4) 

From Equation (2.3), v(s) can be expanded as follows: 

v(s) = E 
¡ 
rt+1 + γrt+2 + γ2rt+3 + · · · | s 

¢ 
¡ ¡ ¢ ¢ 

v(s) = E rt+1 + γ rt+2 + γrt+3 + · · · | s 

v(s) = E 
¡ 
rt+1 + γGt+1 | s 

¢ 

v(s) = E 
¡ 
rt+1 + γv(st+1) | s 

¢ 
, (2.5) 

where Equation (2.5) also known as the Bellman Equation, is a derived recurrence relation of v(s) as 

the expected immediate reward rt+1, plus the discounted value of the successor state γv(st+1). The 

optimal value function v ∗(s), or the value function of the optimal policy, satisfes another Bellman 

equation, as shown in Equation (2.6): Ã ! X ¡ ¢ ∗ ¡ ′¢ v ∗ (s) = max R (s, a)+ γ T s ′ | s, a v s . (2.6) 
a 

s ′∈S 

The optimal policy is defned in Equation (2.7) provided that v ∗(s) converges after calculating Equa-

tion (2.6) recursively: Ã ! X ¡ ¢ ∗ ¡ ′¢ π ∗ (s) = argmax R(s, a) + T s ′ | s, a v s . (2.7) 
a s ′∈S 

As discussed in Section 1.1.2, observations collected by small UAVs through their sensors about 

the state of the environment, objects of interest, or the UAV itself are imperfect or incomplete. This 

condition is also known as partial observability. An important limitation of MDPs in this context is 

that they assume full state observability. Dynamic environments add uncertainty that impacts the 

representation of system states from collected observations. MDP states can not always been inferred 

with high confdence [50], which makes decision-making problems with partial state observability 

better formulated mathematically under the framework of POMDPs. 

2.4 Decision-making under Uncertainty and Partial Ob-
servability 

As the randomness of only partially observable data generates challenges for UAV operators to plan 

optimal paths, uncertainty also comes from unexpected environmental factors, such as sudden wind 

gusts that impact fight operations in general, and indirectly infuences the design of robust motion 

control systems and navigation algorithms [69]. The deployment of small UAVs in felds such as SAR 

and disaster monitoring needs to develop the cognitive power for decision-making under unforeseen 

mid-fight events [50]. POMDPs are one such approach. 

2.4.1 Partially Observable Markov Decision Processes (POMDPs) 

The information received about the state of the environment from sensors embedded in small UAVs 

is normally incomplete and noisy. Hidden or partially observable states include: 1) global position 
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coordinates of the UAV and obstacles in surveyed environments; 2) weather events (e.g., wind gusts, 

fog, poor illumination); 3) relevant metrics to collect data about objects of interest (e.g., identifcation, 

location, quantity, and dimensions); and, 4) UAV status (e.g., integrity of frame, motors and payload, 

and battery power levels). This partial knowledge has inspired the mathematical formulation of 

POMDPs [70], which compared with MDPs, agents are provided with a set of observations O, instead 

of states. Algorithms that solve POMDPs for small UAVs retrieve a motion policy, which outputs action 

commands derived using environment observations. Figure 2.3 presents the agent-environment 

interaction formulated in decision-making problems using POMDPs. 

Agent (i.e., small UAV) 

Environment 

action 
at 

πt 
bt 

R(o, a) 

rt State Estimator 

P (st | ot ,rt , at ) 

observation 
ot 

ot+1 

Figure 2.3: Chain diagram of actions, observations, and belief states between the agent and the environment in 
POMDPs. An action at ∈ A taken by the agent triggers a transition to a new environment observation ot+1 ∈ O. As 
states cannot be directly inferred, a POMDP uses a state estimator to model future belief states bt from collected 
observations. 

POMDPs are formally defned by a tuple 〈S, A,T,R,O, Z ,b0,γ〉 [53] where: 

• S is a fnite set of states. 

• A is a fnite set of actions. ¡ ¢ ¡ ¢′ • T is a state transition function, T s, a, s = P s ′ | s, a . 

• R is a reward function, R (o, a) = E (r | o, a). 

• O is a fnite set of observations. ¡ ¢ ¡ ¢′ ′ • Z is an observation transition function, Z s , a,o = P o | s , a . 

• b0 is the initial belief state. 

• γ is a discount factor γ ∈ [0,1]. 

In POMDPs, uncertainty given by partial observability of observed states is modelled using prob-

ability distributions over the system states. This modelling is known as the belief b, and is defned as 

follows: 

b (H) = P (s1 | H) , · · · ,P (sn | H) , (2.8) 

H = a0,o1,r1, · · · , at−1,ot ,rt , (2.9) 

where H is the history of actions, observations, and rewards the UAV has experienced until a time 

step t . A POMDP solver starts planning from an initial belief b0, whose distribution is modelled 

from known initial conditions (i.e., situational awareness) about the environment and objects of in-

terest (e.g., victims in SAR applications). The belief distribution is then updated following a collected 

observation by the agent. In POMDPs, the policy π is the mapping from belief states to actions: 
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π : b → A. (2.10) 

The value function for POMDPs incorporates the belief concept from Equation (2.6) as follows: Ã ! X ¡ ¡ 
v (b) = max R (b, a)+ γ T b, a,b ′

¢ 
v b ′

¢ 
. (2.11) 

a 
b ′∈B 

A POMDP is solved once the optimal policy π ∗ is found, defned as follows: µ µ ∞ ¶¶X∗ π := argmax E γt R (St ,π (bt )) . (2.12) 
π t=0 

2.4.2 Autonomous Decision-making for Small UAVs using POMDPs 

Theory on decision-making is extensive and relates to autonomous navigation in small UAVs, as well 

as felds such as game theory, Bayesian principles, and POMDPs. An advantage of formulating UAV 

navigation problems with POMDPs is the high level of fexibility to describe the problem and model 

uncertainty. Equally important is the use of POMDPs enables different distribution confgurations of 

state-belief particles. These confgurations meet the needs of real-world object fnding applications, 

given they provide initial information, or situational awareness, about possible locations of objects 

to the localised, rather than assuming a search strategy from a generic set of initial conditions. In 

contrast, fexibility provided by POMDPs comes with the cost that fnding exact solutions (i.e., fnding 

the optimal motion policy) of a navigation problem is computationally intractable [71], which means 

virtually every approach to solve problems formulated as a POMDP provides approximate optimal 

solutions to alleviate computational costs. 

Autonomous navigation algorithms modelled under the framework of POMDPs and solved using 

model-based solvers have proven to be particularly useful for small UAVs [45], [72]–[75], and multi-

objective decision-making problems [76]. For instance, POMDP-based frameworks for object detec-

tion and tracking under GNSS-denied and cluttered environments have been developed and vali-

dated in simulation and real tests in sub 2 kg UAVs [14], [77]. Nevertheless, the motion policies were 

computed using external workstations rather than using a companion computer onboard the UAV. 

Research on POMDP-based solvers for dynamic path-planning applied to multiple object track-

ing [73], [78] has incorporated tasks such as path planning, collision avoidance, external wind dis-

turbance effects and target tracking. These tests were conducted in simulation environments and 

provided limited evidence on the use of the framework in a real-world object tracking applications 

using small UAVs. Similarly, studies on POMDP frameworks have been assessed in humanitarian 

relief applications through simulation, arguing the need to validate existing methods in emulated 

disaster events using real fight tests [45]. 

Studies on small UAVs for autonomous navigation in environments under uncertainty using PO-

MDPs have combined the use of model-based POMDP solvers including anytime meta planner (AM-

PLE) [79], POMDP-lite [80], decentralised POMDP [67], mixed observability Markov decision process 

(MOMDP) [81], POMCPOW and PFT-DPW [82]. Despite the development of novel solvers on formu-

lated problems using POMDPs [83], [84], the majority of experimental results are constrained to sim-

ulated environments, limiting the understanding and applicability of these algorithms in real-world 

environments [74], [85]. Overall, a broader validation of POMDP solvers in real-world environments 

and time-critical applications is required to broaden the scope of small UAVs with enhanced onboard 

decision-making in complex surveillance scenarios. 
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POMDP solvers developed over the last decades categorised as offine and online solvers. Offine 

solvers compute an approximate solution before the agent interacts with the environment. A draw-

back of these offine solvers is the restriction of tracking the redistribution of belief particles during 

policy execution. By comparison, online solvers compute and update motion policies in (near) real-

time while the agent chooses actions and collects observations. Provided that real-time motion 

planning capabilities are a requirement in autonomous navigation under uncertainty for small UAVs, 

the use of online POMDP solvers are suitable in the design and implementation of frameworks for 

small UAVs. The model-based online POMDP solver as well as framework implementations that best 

suit the autonomous decision-making needs in partially observable and uncertain environments for 

resource-constrained hardware onboard small UAVs is adaptive belief tree (ABT), which is discussed 

in the following section. 

2.4.3 Adaptive Belief Tree (ABT) 

Research on model-based online POMDP solvers have signifcantly progressed over the last years 

[59], [86]. Nonetheless, most POMDP solvers are unable to calculate approximated solutions (i.e., 

policy) to formulated POMDP problems in real time, as they recompute the policy at each time step 

from scratch. This concept of re-planning is ineffcient for real-time applications due to waste of 

computational resources after discarding computed policies from previous time steps. While that 

loss may not be relevant for autonomous decision-making in static and structured environments, real-

world environments often present gradual or partial changes, which aggravate that loss of resources. 

ABT [87] is an online POMDP solver that updates its policy at each planning step without incur-

ring computational resource loss. Instead of recomputing the policy from scratch, ABT updates the 

previous policy when changes to the POMDP model are detected. Similar to partially observable 

Monte Carlo planning (POMCP), ABT computes optimal policies in continuous state spaces, and 

approximates the solution by maintaining a set of multiple sample episodes to reconstruct an aug-

mented belief tree T . Subsequently, the transition T and observation functions Z of the POMDP 

model are not explicitly defned but as a generative model. ABT is an extension of POMCPs as it also 

uses Monte Carlo simulations to represent belief states with a set of particles and predict future belief 

states. The root node of the search tree is defned by the initial belief b0, followed by tree branches 

and nodes (i.e., belief nodes) representing the probability of taking an action a ∈ A and receiving an 

observation o ∈ O, as presented in Figure 2.4. 

Figure 2.4: Belief tree using POMDPs, adapted from [88]. Belief nodes (illustrated with circles) are probability 
distributions over system states (red dots). Belief distributions are updated after new observations are collected. 
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The ABT solver contains two key components during its execution, preprocessing and runtime, as 

presented in Algorithm 1: 

Algorithm 1 Augmented Belief Tree (ABT) solver, adapted from [89]. Here, T is the augmented belief 
tree, H is a set of sampled episodes. 

Require: Initial POMDP model m0, initial belief b0. 

Preprocessing Component 

1: (T , H) ← GeneratePolicy(m0,b0) 

2: Let S ′ be the set of all sampled states in H , i.e., S ′ ← {hi .s | i ∈ [0, |h|],h ∈ H } 

3: Let R be a spatial index (e.g., a range tree) representing S ′ . 
4: b ← b0. 

Runtime Component 

5: while running do 

6: if mt ̸= mt−1 {mi is the POMDP model at time i } then 

7: H ′ ← IdentifyAffectedEpisodes (Pt−1,Pt , H ,R,T ). ¡ ¢′ 8: ReviseEpisodes Pt ,T ,b, H . ¡ ¢′ 9: UpdateValues T ,b, H . 

10: end if 

11: while there is still time do 

12: ImprovePolicy (Pt , H ,R,T ,b). 

13: a ← Get the best action in T from b. 

14: Perform action a. 

15: o ← Get observation. 

16: b ← τ(b, a,o). 

17: t ← t + 1. 

18: end while 

19: end while 

The preprocessing component enables ABT to search for a policy offine using the initial belief b0 and 

POMDP model m0. The policy is constructed after sampling a fnite set of episodes. An episode h ∈ H 

is a sampled state trajectory located in a belief node from T . ABT samples an episode by selecting an 

initial state s0 ∈ S contained in b0 and choosing an action a0 ∈ A using the upper confdence bound 

algorithm. From a0 and s0, the solver calls its generative model to sample: 1) an observation o0 ∈ O; 

2) the expected immediate reward r0 = R(s, a); and, 3) a next state s1 ∈ S. The quadruple (s0, a0,o0,r0) 

is then stored as the frst element of h, and the process repeats itself to collect the next quadruple 

starting from s1 ∈ S until a terminal state is reached, or after exceeding a number of stored quadruples 

to sample h. A set of sampled episodes ultimately constitutes H . 

The paths in T are associated with sampled episodes in H . Assuming b as a belief node at level l 

from T , the policy π is defned as: 

π(b) = argmax Q̂(b, a), (2.13) 
a∈A(E ,b) 

where Q̂(b, a) is the estimated Q-value; and, A(E ,b) is the set of actions used to expand b. The solver 

estimates Q̂(b, a) as: 
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Q̂(b, a) = ¯̄
 

1 

H(b,a) 

X ¯̄ V (h, l ), (2.14) 
h∈H(b,a) 

X|h|
V (h, l ) = γi−l R (hi · s,hi · a) , (2.15) 

i=l 

where H(b,a) is the set of sampled episodes containing the sequence (b, a) starting from b0; V (h, l ) 

is the value of an episode h from level l ; γ is the discount factor; and, R is the reward function. As 

the number of sampled episodes in H(b, a) increases, V (h, l + 1) converges to the true Q-value in 

probability, allowing ABT for converging to the optimal policy in probability [87]. 

During execution in runtime, the ABT solver identifes parts to update from the policy by evaluat-

ing the episodes in H that contain states affected by changes in the POMDP model m. ABT updates 

the policy following three key steps by: 1) disconnecting the association between affected episodes 

and corresponding belief nodes in T ; 2) revising h based on the new POMDP model and linking it 

back to T ; and, 3) updating Q-values of newly associated and disassociated beliefs with h. 

2.5 Small UAV Frameworks for Decision-making in Time-
critical Applications 

Research studies on autonomous decision-making in time-critical applications for small UAVs using 

POMDP formulations are scarce. That conducted by Chanel et al. [90] proved an application of multi-

object car recognition using a customised optimisation framework, which executed the POMDP 

solver onboard the small UAV and was optimised during execution. However, limited experimenta-

tion details restrict the reproducibility of this study in terms of the UAV frame, hardware specifcations, 

onboard computer, and vision-based object detector model. Since real tests of this UAV framework 

were conducted in an open rural feld, experiments were simplifed as detected cars appeared isolated 

from nearby obstacles. During an emergency, object (or victim) visuals from camera frames are likely 

to be challenging because of factors such as partial or full occlusion, viewpoint, and scale. 

Other signifcant research conducted by Vanegas-Alvarez [65] investigated the capabilities of on-

line model-based POMDP solvers and UAV frameworks for autonomous object detection and tracking 

under cluttered and GNSS-denied environments. Evaluation of the two fastest online solvers, par-

tially observable Monte Carlo planning (POMCP) [86] and ABT established the problem formulation 

and framework with ABT. Experimental validation of their implementation was narrowed for navi-

gation in indoor environments, and object detection used trivial markers. Another limitation is that 

computing power to run the ABT solver was allocated to an external workstation rather than to the 

UAV itself, so action commands returned by the solver were transmitted onboard to the autopilot of 

the aircraft via its communication sub-system. Further research is therefore needed as Valavanis and 

Vachtsevanos [12] and Carrio et al. [48] claim the dependency of communication modules for these 

tasks is undesirable because the performance of small UAVs might be seriously compromised if those 

modules fail. 

UAV framework implementations on computer vision methods for object detection and decision-

making in real time are diverse. These methods can be catalogued into two primary categories: 1) 

feature extraction; and 2) machine learning [91]. Algorithms based on feature extraction synthesise 

the contents of input images by extracting key data features using explicit mathematical operations. 

In the context of small UAVs for real-time object detection, classical image processing algorithms 

have been established to detect wildlife using thermal imagery [3], augmented-reality markers [34], 
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[65], clothes from stranded victims [92], weeds [93], platforms for take-off and landing [42], and 

vehicles [90]. In order to establish an object detector method using feature extraction, a great research 

effort is normally required to iterate over these operators until extracting relevant features such as 

edges, corners, specifc colours, shape and texture detection, and temporal features. 

Machine learning, and specifcally, methods based on deep learning are state-of-the-art tech-

niques which require a training set of labelled images and objects in order to tune an artifcial neural 

network able of extracting key features. These networks are known as convolutional neural networks 

(CNNs) and use convolutional operators to extract such features, and identify and classify objects. An 

increasing number of UAV applications with onboard inference of CNN models [27], [94] is now pos-

sible because of hardware developments such as NVIDIA graphical processor units (GPUs) and Intel 

vision processing units (VPUs) [51], [95], [96]. The use of the robot operating system (ROS) is extensive 

in robotic applications including UAVs, and has proven to be a successful middleware for modular 

software systems [64], [97]. Technologies closely linked with ROS are Gazebo and Airsim as robotic 

simulators, micro air vehicle link (MAVLink) as the industry standard for UAV communications, Pix-

hawk fight controller unit (FCU) boards, and PX4 autopilot [62], [98], [99]. Since most framework 

designs are constrained for single application needs and have not been tested in a diverse range of 

UAV survey needs [18], [98], researchers or UAV developers may continue to reuse or adopt existing 

approaches to their own customised UAV solutions, increasing costs of research and development. 

Overall, this research aims to expand the use of ABT as it is one of the solvers tested with the most 

framework implementations, with a higher focus on real fight experimentation onboard small UAVs, 

and in challenging indoor and outdoor environments. The framework design should run computa-

tionally expensive operations onboard a small UAV, such as approximating a POMDP solution via 

ABT, and onboard inference of cutting-edge object detector methods based on CNNs. The design 

of the UAV framework should demonstrate robustness and scalability properties against a range of 

camera payloads, object detectors, and UAV remote sensing felds. 

2.6 Summary 

This research serves to establish the limits of SDP algorithms such as model-based online POMDP 

solvers in UAV applications of exploration and object fnding, with higher levels of environment and 

object uncertainty, namely humanitarian relief where the structural conditions of affected zones 

are unknown, and SAR where the quick identifcation, localisation, and quantifcation of victims 

is critical. Autonomous onboard decision-making that mitigates object detection uncertainty from 

computer vision algorithms (i.e., identifed, located, quantifed or measured objects) in complex 

scenarios will be undertaken in this research using modelling approaches to reduce uncertainty from 

outputs of modern vision-based detectors such as CNN object detectors. Better data representations 

that improves data acquisition quality and accuracy in detected objects (or victims) is essential for 

small UAVs to be fully practical in time-critical applications [22]. A system that offers better situational 

awareness by evaluating data quality in real-time onboard small UAVs will allow frst responders to 

intervene more effectively. Table 2.3 presents the research analysis undertaken to establish the two 

key research questions. 
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Table 2.3: Literature review summary of autonomous decision-making methods for autonomous navigation under environment and object detection uncertainty onboard small UAVs. 

Research Topic Research Gap Research Question Contribution 
SDPs for autonomous motion plan-
ning in complex environments under 
uncertainty and partial observability 
using small UAVs. 

Need to validate SDPs onboard small 
UAVs in complex setups and real fight 
tests. 

1.1 What level of artifcial cognitive learning 
and uncertainty modelling is required to 
identify, localise or quantify objects positioned 
in cluttered and challenging scenarios using 
small UAVs and vision-based object detectors? 

Problem formulation motion policy 
computed via a model-based POMDP 
solver, designed for indoor (Chapter 3) 
and outdoor environments (Chap-
ter 5). 

Addressing identifcation (i.e., 
confdence) uncertainty from 
vision-based object detectors in 
surveys for real-time processing 
onboard small UAVs. 

Need to prioritise robust intelligent 
small UAVs to reduce object detection 
uncertainty rather than retraining ex-
isting CNN models. 

POMDP-based motion planner on-
board small UAVs that interacts in 
complex environments from off-the-
shelf CNN object detectors (Chap-
ter 4). 

Need to examine modelling methods 
of object detection uncertainty and 
their application in SDPs for UAV mo-
tion planning. 

1.2 Which factors defne the complexity of 
an SDP so as to reduce object detection un-
certainty from collected environment observa-
tions using vision-based sensors in time-critical 
applications? 

Extended problem formulation with 
detection confdence uncertainty, re-
ward function, and fight modes tested 
with several object position distribu-
tions (Chapters 4 and 5). 

Framework implementations of SDPs 
and vision-based methods for 
autonomous navigation in 
resource-constrained hardware 

Need to optimise onboard inference of 
computationally expensive CNN mod-
els for sub-2 kg UAV hardware. 

2.1 How can computationally intensive tasks 
such as online SDP algorithms, and onboard 
inference of CNN models for object detection 
and segmentation, be integrated to run 

Framework design for deployment of 
CNN models through VPUs and Open-
VINO (Chapters 4, 6 and 7). 

Need to integrate computationally Framework design that computes a 
onboard small UAVs. expensive motion planners such as simultaneously under resource-constrained motion policy using a model-based 

model-based online POMDP solvers hardware in sub-2 kg UAVs? POMDP solver onboard a sub-2 kg 
onboard sub-2 kg UAV hardware. UAV (Chapters 4, 6 and 7). 

Robustness and scalability of 
frameworks for autonomous 
decision-making onboard small UAVs 
in various application domains. 

Need to design a modular and 
scalable UAV framework 
implementations beyond a single 
feld and application domain. 

1.3 What are the modelling considerations in a 
formulated SDP that enable the scalability of a 
UAV framework for autonomous navigation for 
a range of diverse vision-based payloads, and re-
mote sensing application needs beyond object 
detection? 

Modular and scalable UAV framework 
validated with SAR and planetary 
exploration case studies (Chapters 6 
and 7). Scalability of vision-based 
payloads achieved via inclusion of 
camera lens properties in the 
problem formulation (Chapters 5 
and 7). Robustness of framework 
tested with various CNN models for 
RGB and thermal object detection 
and image segmentation (Chapters 6 
and 7). 

2.2 What are the design criteria to scale a UAV 
framework for autonomous navigation under 
environment and object detection uncertainty 
to other remote sensing applications that re-
quire autonomous decision-making capabili-
ties onboard small UAVs? 



Chapter 3 

Autonomous UAV Navigation for Active 
Perception of Targets in Uncertain and 
Cluttered Environments 

SMALL UAVs are used increasingly in civilian applications that demand rapid human intervention 

such as surveillance, disaster monitoring and SAR as they become more affordable, offer real-time 

telemetry in inaccessible or dangerous zones, greater payload fexibility, and an increasing number of 

autonomous capabilities. This chapter presents the frst published paper from this research and es-

tablishes the problem formulation for UAV autonomous navigation in cluttered environments under 

object detection uncertainty and partial observability. The problem is mathematically formulated 

using a POMDP, and solved online using the ABT solver. The system is designed to run in resource-

constrained hardware onboard small UAVs, and tested using the Gazebo robotics simulator, ROS, 

and PX4 SIL autopilot plugin. This paper presents an HIL implementation for onboard inference of 

a pre-trained CNN-based model to identify and locate victims from streamed camera frames by a 

virtual camera, and processed in real-time using an Intel Myriad vision processing unit (VPU). The 

paper discusses the mathematical formulation of the navigation problem, and the robustness of the 

POMDP-based motion planner at various levels of victim location and pose uncertainty. 
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Abstract—The use of Small Unmanned Aerial Vehicles (sUAVs)
has grown exponentially owing to an increasing number of au-
tonomous capabilities. Automated functions include the return
to home at critical energy levels, collision avoidance, take-off
and landing, and target tracking. However, sUAVs applica-
tions in real-world and time-critical scenarios, such as Search
and Rescue (SAR) is still limited. In SAR applications, the
overarching aim of autonomous sUAV navigation is the quick
localisation, identification and quantification of victims to pri-
oritise emergency response in affected zones. Traditionally,
sUAV pilots are exposed to prolonged use of visual systems to
interact with the environment, which causes fatigue and sensory
overloads. Nevertheless, the search for victims onboard a sUAV
is challenging because of noise in the data, low image resolution,
illumination conditions, and partial (or full) occlusion between
the victims and surrounding structures. This paper presents
an autonomous Sequential Decision Process (SDP) for sUAV
navigation that incorporates target detection uncertainty from
vision-based cameras. The SDP is modelled as a Partially Ob-
servable Markov Decision Process (POMDP) and solved online
using the Adaptive Belief Tree (ABT) algorithm. In particular,
a detailed model of target detection uncertainty from deep
learning-based models is shown. The presented formulation
is tested under Software in the Loop (SITL) through Gazebo,
Robot Operating System (ROS), and PX4 firmware. A Hard-
ware in the Loop (HITL) implementation is also presented using
an Intel Myriad Vision Processing Unit (VPU) device and ROS.
Tests are conducted in a simulated SAR GPS-denied scenario,
aimed to find a person at different levels of location and pose
uncertainty.
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1. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are currently used in sig-
nificant civilian applications such as remote sensing, disaster
monitoring, surveillance, and Search and Rescue (SAR) [1].
Part of the success of this technology is caused by cheaper
hardware and advances in sensor systems, computer vision
and image processing, and autonomous navigation. Ad-
vances in autonomous navigation include automated home
return at critical battery levels, reactive collision avoidance,
autonomous take-off and landing, and active target tracking.
Nonetheless, the deployment of these systems at a broader
scale is still restricted by operational limitations in hardware
and software [2]. Current limitations on Small UAVs (sUAVs
are drones that weigh less than 13 kg [3]) include: (a) on-
board computing power, (b) payload weight, (c) energy stor-
age, (d) sensor resolution and image quality and (e) cognition
capabilities in unstructured environments [4].

While recent research suggests that some hardware con-
straints are likely to be resolved soon [5], the development
of autonomous decision-making processes on sUAVs is a
far more challenging problem [4]. Decision-making capa-
bilities on sUAVs are still limited when dealing with mid-
flight events, path planning and obstacle avoidance, or target
finding under uncertainty and partial observability [6]. Engi-
neers and roboticists usually reduce uncertainty by adjusting
robot working environments to become as structured as pos-
sible [7]. However, real-world applications are unstructured,
full of uncertainties.

Natural disasters are events that unfortunately still claim
human lives around the globe [8, 9]. Emergency situations
also occur by unfortunate situations such as people getting
into distress in rivers and shores and lost people in rural
areas. Disaster management and rescue workers are critical
to react in emergency situations and diminish fatalities. In
SAR applications, the overarching aim of autonomous sUAV
navigation is the quick localisation, identification and quan-
tification of victims to prioritise emergency response in af-
fected zones [10]. Various challenges need to be addressed to
enable a sUAV to navigate autonomously in SAR scenarios.

In emergency situations, the available information for the
evaluation of access areas, affected structures (if any), and
the identification of victims (if any) is usually unknown or
limited [11]. Second, the vision tasks performed by a sUAV
are challenging because of noise in the data, low image reso-
lution, illumination conditions, and partial (or full) occlusion
of the victims. Additionally, the application of sUAVs under

1
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cluttered and GPS-denied environments require the use of
Simultaneous Localisation and Mapping (SLAM) algorithms
that rely on advanced sensor systems (e.g. LiDAR), which
are often expensive, complex to operate and sometimes, com-
putationally intensive. Moreover, optimal control of sUAVs
require the use of workstations owing to their resource-
constrained onboard hardware. Normally, sUAV operators
decide on the next sequence of navigation commands to
interact with the environment using visual telemetry [12].
However, the prolonged use of these interactive systems is
claimed to produce fatigue and sensory overloads. Last,
the sUAV must avoid collisions within the surveyed areas,
it should generate a path-planning strategy for exploration
based on the environment, natural disturbances (e.g. wind,
atmospheric pressure, temperature) and the drone kinematic
constraints.

Despite recent advances in autonomous sUAVs for SAR ap-
plications [13–15], there are still unresolved issues. Namely,
lack of validation of these systems in real-world environ-
ments, uncertainty in the identification, location and counting
of objects of interest (i.e. victims) under complex image
representations, and optimal interaction between the drones
and the victims. The above-mentioned limitations motivate
the exploration of sUAV systems with increased cognition
and autonomy level in stochastic environments under target
detection uncertainty from vision-based sensors. This paper
presents a framework for autonomous sUAV navigation that
models target location and identification uncertainties from
vision-based cameras and object detection models. The
problem is formulated as a Partially Observable Markov De-
cision Process (POMDP) and solved online using the Adap-
tive Belief Tree (ABT) algorithm. In particular, a detailed
model of the uncertainty derived from a deep learning object
detector algorithm is demonstrated. The presented system
handles autonomous sUAV navigation under uncertainty as a
multi-objective problem comprising path planning, obstacle
avoidance, motion control, and target detection tasks. The
proposed approach addresses the following challenges:

1. Autonomous sUAV decision-making under environment
uncertainty in SAR applications.

2. Uncertainty on the identification and location of victims
in cluttered and GPS-denied environments.

3. Modelling of target detection uncertainty from vision-
based sensors.

4. Execution of computationally expensive decision-making
and object detection algorithms in resource-constrained
hardware.

The proposed system is validated with experiments in sim-
ulation. In these experiments, the sUAV is tasked with the
mission of finding a lost person in a cluttered environment.

The rest of paper is structured as follows: Section 2 discusses
previous works on autonomous sUAV decision-making under
uncertainty and target detection uncertainty. Section 3 re-
views briefly uncertainty representation, POMDPs and online
ABT solvers for autonomous sUAV navigation. Section 4
details the problem formulation and modelling of target de-
tection uncertainty. Section 5 describes the proposed system
architecture, software and hardware tools, and experimenta-
tion setup. The evaluation of the suggested formulation under
a simulated cluttered and GPS-denied scenario is shown in
Section 6. Finally, Section 7 discusses future work.

2. RELATED WORK
Theory on decision-making is extensive and relates not only
to autonomous sUAV navigation but also to other fields such
as multi-objective decision-making, game theory, navigation
strategies, Bayesian principles, Markov Decision Processes
(MDPs) and Partially Observable Markov Decision Processes
(POMDPs) [16]. Since time-critical applications (e.g. SAR)
feature uncertainty and partial observability in the system
states and targets, MDPs and specially POMDPs have proven
to be useful while making navigation decisions under these
conditions [10, 17–20]. Literature has likewise shown how
the modelling of POMDPs in highly uncertain environments
and partial observability is a suitable approach for sUAV nav-
igation problems [16]. Vanegas and Gonzalez [21], for exam-
ple, implemented an autonomous sUAV navigation algorithm
for GPS-denied and cluttered environments. The authors
compared two of the fastest POMDP online solvers, namely
Partially Observable Monte Carlo Planning (POMCP) [22]
and Adaptive Belief Tree (ABT) [23]. The proposed frame-
work detailed the possibility of using the ABT solver for
the drone to make decisions in seconds. Nonetheless, the
authors narrowed their tests for indoor environments and
detected trivial targets, particularly 2D markers. Additionally,
the navigation commands were transmitted using the sUAV
communication module to a workstation. As discussed by
Valavanis and Vachtsevanos [24] and Carrio et al. [4], the
dependency of communication modules for these tasks is
undesirable because the drone’s behaviour under complex
environments might become seriously compromised if those
modules fail.

Another significant research by Ragi and Chong [18, 25]
presents POMDP-based solvers for dynamic path-planning
applied to multiple target tracking. The POMDP formulation
became more significant towards fully autonomous sUAVs by
including path planning, collision avoidance, external wind
disturbance effects, and tracking evasive treats. Similarly,
Bravo et al. [10] assessed POMDP frameworks in human-
itarian relief applications through simulation. The authors
concluded a higher need to validate existing methods in real
disaster situations. Other related POMDP-based solvers have
also shown advances compared to standard models such as
Anytime Meta PLannEr (AMPLE) [26], POMDP-lite [27],
decentralised POMDP [28] and Mixed Observability Markov
Decision Process (MOMDP) [29].

Research studies on onboard autonomous sUAV decision-
making for real-time applications using POMDPs are limited.
One of the most notable studies is the work conducted by
Chanel et al. [30], who could show a multi-target car recogni-
tion application using a customised optimisation framework.
Their system was able to run the POMDP solver onboard
the sUAV and optimised during execution. The authors,
nevertheless, did not provide relevant experimentation details
such as the sUAV model, hardware specifications and vision-
based algorithms. Furthermore, they also demonstrated the
framework in an open rural field, where levels of target
uncertainty could become considerably low once a car is
perceived under the camera’s FOV and detected by vision-
based detectors. Compared to emergency environments,
image representations of victims are more challenging due
to partial or full occlusion, pose, and dynamics.
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3. BACKGROUND
Types of Uncertainty

sUAV perception is limited by noisy sUAV onboard sensors,
poor image representations of the targets caused by partial
and entire occlusion from other objects, and the dynamics of
the target itself [7]. Partial observability from vision-based
cameras introduces target uncertainty, which can be classified
as follows:

1. Location: target location uncertainty is caused by the
limited extent of vision-based sensors to capture images
(also known as Field of View (FOV)). These limitations
are present in mapping, surveillance, and any other target
finding applications under cluttered and challenging en-
vironments. The location of victims in SAR operations
is, for example, challenging when vision-based sensors
cannot cover specific FOV configurations (e.g. sUAV
viewpoint in non-nadir or side-by-side settings) or when
the victims are partially occluded by an urban structure,
the effects of the disaster situation (e.g. fire smokes,
earthquakes, floods) or natural events (e.g. fog, cloudy
and wet conditions).

2. Identification: this refers to limitations on recognising a
specific identification property of the object of interest.
Identification uncertainty on victims includes age, gender
and health conditions.

3. Quantity: target counting uncertainty applies where mul-
tiple victims are partially occluded among themselves,
between themselves and environment objects, or envi-
ronmental factors that affect the image quality of vision-
based sensors. Counting is important in humanitarian
relief operations when rescuers are required to prioritise
emergency response by estimating the number of victims.
The collection of these statistics will determine, therefore,
the areas that require immediate intervention.

4. Dimensions: this type of uncertainty occurs when the
surveying application requires the collection of morpho-
logical properties of the victims. Examples include a
person’s height and volume. In SAR operations, the
awareness of a victim’s height or volume could infer
complementary rescue conditions and define resources
and processes needed to assist them.

Another source of uncertainty comes from the outputs of
computer vision algorithms for object detection. Developed
algorithms use varied strategies for object detection, ranging
from classical image processing manipulations (e.g. filtering,
thresholding, edge and contour detection, and morphological
operations), feature extraction (e.g. SIFT, SURF), adaptive
filtering (e.g. Kalman filters), visual odometry (e.g. SLAM)
and deep learning (e.g. Region-based and Single Shot De-
tector CNNs) [31]. SDPs for autonomous sUAV decision-
making should consider uncertainty from vision-based target
detectors to adjust their path planning when detections lack
accuracy.

Uncertainty in sUAV navigation is caused by the kinematics
of the drone and disturbances from the environment. Since
a sUAV takes off, there is always a present drift in the
initial position and heading. Errors in a sUAV local position
estimator likewise exist from propagated errors from sensor
readings and motion controllers. Last, the dynamics in the
environment might affect the behaviour of sUAVs, such as
changes in wind direction and currents, temperature and
atmospheric pressure.

4. PROBLEM FORMULATION
Partially Observable Markov Decision Process

The process of adding cognition capabilities to a sUAV in
uncertain environments can be catalogued as a decision-
making problem. An autonomous sUAV system should
decide the optimal sequence of actions that maximises the
probabilities of accomplishing the flight mission. The flight
mission consists in searching for a victim and stops once the
first victim is found. This selection of sequence of actions
are evaluated not only by achieving the primary search goal,
but also by following some interaction rules with the envi-
ronment, namely collision avoidance, the exploration within
a pre-defined Region of Interest (ROI) and short flight times.
Considering that real-world environments are dynamic, the
sUAV should also evaluate changes in the environment and
update its path planning strategy. Therefore, there must be a
constant interaction between the sUAV and the environment,
where each action taken by the drone at a time t should be
monitored using collected data from the environment in the
form of observations. This data analysis aims to infer the
current conditions (or states) of the system and how close the
sUAV is to achieve the primary mission goal. Based on that
analysis, the sUAV should decide on the next taken action
at a time t + 1 that increases the chances of accomplishing
the mission. This optimisation problem aims to define a
sequence of actions that maximises those rewards in the long
run, which depend on the current state of the environment and
individual collected rewards.

MDPs are discrete-time mathematical models that allow
the description of Sequential Decision Processes (SDPs)
on environments under uncertainty [7]. A problem for-
mulation under MDPs assumes that the system states are
fully observable. Conversely, POMDPs incorporate uncer-
tainty and partial observability from the agent (i.e. sUAV)
in the system states. POMDPs are defined by the tuple
〈S,A, T,R,O,Z, γ〉 where S is a finite set of states, A is a
finite set of actions, T is a state transition probability matrix
T ass′ = P(St+1 = s′ | St = s,At = a), R is a reward
probability matrix Ras = E [Rt+1 | St = s,At = a], O is
a finite set of observations, Z is an observation probability
matrix Zas′o = P [Ot+1 = o | St+1 = s′, At = a], and γ is a
discount factor γ ∈ [0, 1].

In POMDPs, uncertainty in the system states are represented
by a probability distribution of the system over all possible
states in its state space, called belief states b, defined in
Equation 1:

b(h) = (P
[
St = s1|Ht = h

]
, · · · ,

P [St = sn|Ht = h])
(1)

where H is the history of actions, observations and rewards
that the agent has experienced until time t,

Ht = a0, o1, r1, · · · , at−1, ot, rt (2)

Given a current belief state b, the goal of any POMDP
solver is to find a sequence of actions that maximises the
discounted accumulated reward. This sequence of actions is
commonly known as the policy π. The behaviour of an agent
is represented by mapping a policy π : b→ A. The POMDP
is solved by finding the optimal policy π∗ that maximises the
expected accumulated reward.
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π∗ := arg max
π

(
E

[ ∞∑

τ=0

γtτR
(
Stτ , π

(
btτ
))
|bt0 , π

])
(3)

Adaptive Belief Tree

Many online POMDP solvers recompute the optimal policy
at each time step from scratch. This concept or re-planning is
inefficient for real-time applications because of the loss of
computational and time resources by discarding computed
policies at previous time steps. While that loss might not
be as important on static, structured environments, real-world
environments often present gradual or partial changes, which
aggravate that loss of resources. The ABT solver, developed
by Kurniawati and Yadav [23], proposes the reuse of the
previous computed policy and generates policy updates when
changes in the POMDP model are detected. Similar to Par-
tially Observable Monte Carlo Planning (POMCP), ABT can
approximate optimal policies in continuous state spaces. The
ABT solver approximates the solution by maintaining a set
of multiple sample episodes. Consequently, the probability
distributions of the POMDP are not explicitly defined but as
a generative model.

The ABT solver uses an approach of planning and execution
in real time. First, an offline optimal policy is calculated
based on the POMDP model. Then, the agent executes an
action from the offline obtained policy. The agent collects
an observation following the chosen action. Afterwards, the
belief states are updated based on the collected observation.
Subsequently, the ABT solver will update the policy from the
updated belief states. Finally, the agent is ready to execute
the next action from the updated policy.

sUAV Navigation Task

The proposed approach aims for a sUAV to find a lost person
in a cluttered indoor environment. The environment, illus-
trated in Figure 1, contains a restricted flying area, several
obstacles and the person to be found at different position
configurations (further setup details can be found in Section 5
and Section 6). The sUAV is assumed to incorporate a visual
odometry system for pose and motion estimation. Obser-
vations from vision-based sensors comprise a downward-
looking camera. Functions such as take-off, landing, and
return home are delegated to the sUAV autopilot. Therefore,
the autonomous sUAV navigation task will begin after the
drone reaches an initial waypoint location and will finish
after the victim is found. The optimal policy to be learnt is
the one that allows the sUAV to accomplish path planning,
obstacle avoidance, and finding the victim successfully at
different levels of uncertainty. Further details on the system
architecture can be found in Section 5.

State Space

The state space S is the Cartesian product of Sr, the state
space of the sUAV Sv , the state space of the victim.

S = (Sr, St) (4)

The sUAV states are defined in Equation 5,

Sr = (pr, or, fc, fb) (5)

Figure 1: Illustration of the sUAV navigation task to find
people in a cluttered environment.

pr = (xr, yr, zr) (6)

or = ψr (7)

fc =

{
true if sUAV crashes,
false otherwise. (8)

fb =

{
true if pr > fROI ,
false otherwise. (9)

where pr is the position of the robot and or is the orientation
of the robot in the world Cartesian frame; or is simplified
to ψr because multi-rotors primarily control their orientation
based on their yaw angle only; fc is a discrete state that
defines whether the sUAV has crashed with an obstacle and
fb determines whether the sUAV is flying beyond the limits
of the flying area.

The victim states are defined by Equation 10,

Sv = (pv, ov, fv) (10)

pv = (xv, yv, zv) (11)

ov = ψv (12)

fv =

{
true if target is found,
false otherwise. (13)

where pv is the position of the victim and ov is the orientation
of the victim in the world Cartesian frame; The orientation of
a person can likewise be simplified usingψv only, the victim’s
yaw angle; fv is the discrete state of whether the target has
been found by the sUAV.

4
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Table 1: sUAV set of actions

Action pr(m) or(rad)

Forward (0.3, 0, 0) 0
Right (0, 0, 0) π/4
Left (0, 0, 0) −π/4
Up (0, 0, 0.3) 0
Down (0, 0,−0.3) 0
Hover (0, 0, 0) 0

Actions

The multi-rotor interacts with the environment using a set of
six actions, as shown in Table 1.

For any flight mission, the POMDP assumes that the sUAV is
already flying when it starts its autonomous interaction with
the environment. Therefore, other common sUAV actions
such as autonomous takeoff, landing and return home are
addressed by the sUAV autopilot instead.

Transition Function

The motion model of the sUAV is based on the set of actions
described above. Changes in rotation can be modelled using
the rotation matrix R of a quad-rotor [32]. Owing to the
kinematics of a multi-rotor sUAV, the evaluation of its θ and
φ angles are discarded in the model. Additionally, an angle
deviation ϕ is added to ψ to incorporate uncertainty caused
by pose estimation errors. This uncertainty is modelled as a
normal distribution with mean µ = ψr and standard deviation
σ = 3.0◦. Thus, R is simplified as shown in Equation 14.

Rr =

[
cos(ψr + ϕr) − sin(ψr + ϕr) 0
sin(ψr + ϕr) cos(ψr + ϕr) 0

0 0 1

]
(14)

The transformation matrix to model changes in position per
time step is defined through Equation 15,

prt+1 = prt + Rrt∆prt (15)

which can be expanded as:

[
xrt+1

yrt+1

zrt+1

]
=

[
xrt
yrt
zrt

]
+

[
cos(ψrt + ϕrt) − sin(ψrt + ϕrt) 0
sin(ψrt + ϕrt) cos(ψrt + ϕrt) 0

0 0 1

][
∆xrt
∆yrt
∆zrt

] (16)

where ∆prt = (∆xrt ,∆yrt ,∆zrt) is the change in the
robot’s location from time step t to time step t+ 1.

The dynamics of the sUAV through changes in position
(∆prt ) are modelled using a system identification process.
Further details on the calculation of ∆prt can be found in the
Appendix.

Rewards

The system rewards R is defined by Equation 17,

R = rmove + rcrash + rout + rf + rd (17)

where rmove is the cost (negative reward) per move, which
encourages the sUAV to find the victim in a minimum number
of steps. rcrash is the cost for the drone by crashing itself with
an obstacle; rout is the cost of flying beyond the explicitly
defined Region of Interest (ROI) limits; rf is the reward if
the victim is found; and rd is the cost given by the Euclidean
distance between the sUAV and victim locations, as defined
in Equation 18:

rd = −
√

(prx − pvx)2 + (pry − pvy )2 + (prz − pvz )2
(18)

The cost values of rd are directly proportional to the distance
between the robot and the victim in the x, y, z axes. Including
rd encourages the sUAV to get closer to the victim and collect
better image representations from vision-based sensors. The
values for the rest of the rewards were acquired empirically,
as shown in Table 2.

Table 2: System rewards for a sUAV target finding task

Reward Value
rmove −10

rcrash −150

rout −300

rf 500

Observation Space

The set of observations O for this problem are defined as:

O = (opr , opv , ovf ) (19)

where opr is the local pose estimation of the robot; opv is
the local pose estimation of the victim; and ovf is a discrete
observation defining whether the victim has been detected
by the sUAV computer vision object detector. The victim
pose observation is received only when the person is found.
The object detector executes a pre-trained off-the-shelf deep
learning object detector model. The datasets used to fit these
models commonly contain thousands of images of classes
collected from a frontward-looking camera configuration.

Observation Model

The observation model Z comprises the estimated sUAV
position in the world coordinate frame and the location of
the victim if it is detected by the downward-looking camera.
The detection of a victim relies on the camera’s Field of
View (FOV). The modelling of the FOV depends on the
sensor properties, the robot’s pose and heading observations.
First, the horizontal and vertical FOV angles are calculated as
defined in Equation 20 and Equation 21.

FOVV = 2 tan−1
(
w

2f

)
(20)

FOVH = 2 tan−1
(
h

2f

)
(21)
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where w is the sensor width, h is the sensor height, and f is
the focal length of the downward-looking camera. The extent
of the observed FOV area (or footprint) is calculated as:

ltop = pr(z) · tan(α+ 0.5 · FOVH) (22)

lbottom = pr(z) · tan(α− 0.5 · FOVH) (23)

lleft = pr(z) · tan(α+ 0.5 · FOVV) (24)

lright = pr(z) · tan(α− 0.5 · FOVV) (25)

where l∗ is the footprint extent of any collected image and
α is the gimbal angle of the camera from the vertical (i.e. 0
degrees), as depicted in Figure 2.

The calculation of the footprint point coordinates with its
center in the origin is defined as:

c1 = (ltop, lleft, 0) (26)

c2 = (ltop, lright, 0) (27)

c3 = (lbottom, lright, 0) (28)

c4 = (lbottom, lleft, 0) (29)

A transformation matrix is then calculated to locate the point
coordinates within the sUAV reference frame:

[
c′x
c′y
c′z

]
=

[
pr(x)
pr(y)
pr(z)

]
+

[
cos(ψr) − sin(ψr) 0
sin(ψr) cos(ψr) 0

0 0 1

][
cx
cy
cz

]
(30)

A victim is predicted to be within the camera’s FOV if
a belief location point of the person is positioned inside
the rectangular polygon from the group of c points. This
calculation is performed as the sum of the angles between
the victim belief position point and each pair of points that
comprise the rectangle [33], as defined in Equation 31.

θ =
4∑

i=1

{
tan−1

[
ci+1(y)− pt(y)

ci+1(x)− pt(x)

]
−

tan−1
[
ci(y)− pt(y)

ci(x)− pt(x)

]} (31)

From this formulation, the victim location point is predicted
to be inside of the camera’s FOV if θ = 2π. Perfect
accuracy is, however, assumed here from any vision-based
model implemented in the detection subsystem. Target detec-
tion uncertainty from computer vision, and specifically, pre-
trained deep learning detectors, occurs from different factors,
including image noise, illumination conditions, image reso-
lution, image representations of people from the dataset and
camera configuration. Even though these object detection
models can be improved using different techniques, some
of these factors (that cause uncertainty) can be simulated by
extending the target finding modelling. Taking into account

that off-the-shelf object detection models give their best re-
sults when achieving close image representations from their
trained datasets (e.g. ImageNet, COCO), a positive person
detection is simulated if the sUAV and victim heading angles
are similar (i.e. aligned) each other, as defined in Equation 32.

target =

{
found if θ = 2π and |ψr − ψt| < 30◦

not found otherwise
(32)

From the observation model described above and the reward
function defined in Equation 17 and Equation 18, target
detection uncertainty from deep learning object detectors is
expected to be reduced by encouraging the robot to fly at
a close distance between the victim and the drone itself.
Furthermore, the sUAV will also adjust its orientation to
match potentially a scene representation that increases the
likelihood of the detector to detect a person.

5. IMPLEMENTATION
System Architecture

The proposed framework comprises four modules that inter-
act with a multi-rotor sUAV under simulation, as shown in
Figure 3.

Software in the Loop module—The sUAV is controlled using
PX4, an open source software developed by the Dronecode
Project [34]. The PX4 architecture is comprised of two
layers: the flight stack layer and the middleware layer. The
flight stack layer contains a pipeline of flight controllers for
a rich set of UAVs (multi-rotors, fixed-wing and VTOL)
and altitude and position estimators. These estimators usu-
ally make predictions from one or multiple sensor inputs
such as IMU and GPS. The PX4 flight controller follows a
feedback control loop process for position and velocity set-
point values, a PID controller, and feedback signals from
the estimators. The middleware layer contains the device
drivers for the sUAV sensors, communication interfaces, and
a simulation layer.

The simulation layer (PX4 Software in the Loop (SITL))
ports the PX4 architecture in a simulated sUAV platform and
environment to a local machine. The sUAV (a 3DR Iris)
and the download-looking camera (an ov7251) are simulated
under the Gazebo simulator.

Hardware in the Loop module—Given hardware limitations
on sUAVs, an Intel® Neural Compute Stick is integrated into
the system. The stick is a plug and play Vision Processing
Unit (VPU) device, an optimised microprocessor that boosts
inference from deep learning models. Intel provides a spe-
cific software toolkit to obtain performance gains through
the OpenVINO library. OpenVINO supports a range of
deep learning frameworks such as TensorFlow, Caffee and
PyTorch, and optimised versions of OpenCV and OpenVX
for standard image processing operations. The source code
for target detection with OpenVINO contains ROS bindings
in Python, allowing the use of this hardware for both real tests
and simulation environments via PX4 SITL and Gazebo. The
latter provides, therefore, support under a Hardware in the
Loop (HITL) interface.

Detection module—The detection module comprises a deep
learning object detector. The selected detector is an open-
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Figure 2: FOV and 2D image representation from a vision-based camera pointing to the ground with an angle α from
the vertical.
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Figure 3: Proposed system architecture under a simulation environment.

source instance of the Google MobileNet Single Shot Multi-
box Detector (SSD) architecture [35]. The model is deployed
in caffe and fit using pre-trained weights from the PASCAL
VOC0712 dataset, achieving a mean average precision of
72.7%. For every read frame, the detection module sub-
scribes to a downward-looking camera ROS topic included
in the Iris model. Input frames are resized into dimensions
of 300 × 300. Any object detections with a confidence
value greater than 30% from the output layer are displayed
in the processed frame. If the chosen class (i.e. the object of
interest) is displayed, the position of the object is estimated
following the formulation described in Section 4. An illus-
tration of a person detection from the deep learning model is
shown in Figure 4.

Decision-making module—The POMDP formulation, which
was described in Section 4, is computed using the TAPIR
toolkit [36]. The toolkit incorporates the online ABT solver

which handles continuous states. Additionally, TAPIR in-
cludes a ROS interface that eases communication between the
online solver and the sUAV flight controller (PX4 SITL).

Experimentation Setup

The system was tested in a cluttered and GPS-denied sim-
ulated environment using the Gazebo simulator. The goal
of the sUAV is to find a child who needs assistance to
contextualise the experiments under SAR situations. The
flying area, with dimensions 6 × 6 m in length and width
and 3 m in height, contains several column obstacles using
cardboard boxes and a table, as shown in Figure 1.

The test scenario contains three cardboard obstacles in form
of columns placed throughout the scene, a table that partially
occludes the victim, a safety net which delimits the flying
area and a child dummy to be found. For all the experiments,
the child is always located under the table at world Cartesian

7
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Figure 4: Detection example of a child dummy from a
downward-looking camera under Gazebo SITL. the sUAV
takes actions to align itself with the child and minimise
uncertainty.

coordinates (2.0,−2.0, 0.2). Visuals of the child come from
a downward-looking camera attached to the Iris UAV frame.
The sUAV uses the take-off and landing modes from the PX4
autopilot, and start the navigation task at world Cartesian
coordinates (−2.0,−2.0, 2.0).

6. RESULTS
The autonomous decision-making system and target detec-
tion uncertainty is evaluated with two types of setups. The
first setup declares different levels of child location uncer-
tainty within the flying area. The second setup evaluates the
system under different child orientation configurations.

Location Uncertainty

Location uncertainty for the child is defined through three
case studies, illustrate in Figure 5 and described as follows:

A single location estimation: the belief states of the victim
location are represented as a point cloud, sorted as a
normal distribution (µ = 0m,σ = 0.5m) at one specific
region (top right corner from Figure 5a).

B multiple location estimation: the belief states of victim
location now include two possible locations, which are
sorted as a normal distribution (µ = 0m,σ = 0.5m) and
represented as two point clouds (Figure 5b).

C uniform location estimation: the belief states of the victim
location are uniformly distributed into the flying area,
assuming thus, that the location of the victim is unknown
(Figure 5c).

Each case study was run 40 times, with a mean duration per
time step of 1.049 seconds. The success rate per case study is
illustrated in Table 3.

Table 3: Location uncertainty success rates under SITL.

Case Study Success Rate
(Target found)

Failure Rate
(Crash)

Failure Rate
(Timeout)

A 100% 0% 0%
B 87.5% 12.5% 0%
C 52.5% 2.5% 45%

Overall, the success rate for case study A is remarkable,
achieving 100% of successful runs. The sUAV was able
to follow the reward structure with the absence of crash
reports or flying beyond the ROI limits. The drone planned a
trajectory that ensured matching its location above the target

(a)

(b)

(c)

Figure 5: SITL environment illustration that overlays an
occupancy map (in green) and the belief map (in red).

point cloud first, followed by adjusting its heading angle ψ
to filter target location particles until the detection subsystem
found the target. Similarly, case study B, which encouraged
the sUAV to fly nearby two of the cardboard boxes, achieved
a success rate of 87.5%. As shown in Figure 5b, a second
point cloud of child location estimations was added in the
middle of two cardboard columns. Even though the drone
was able to adjust its trajectory after filtering all the particles
in zones without the presence of the child, drifts in the x and
y axes were clearly visible while the sUAV spun next to the
columns. For case study C, the number of failures became
evident by exceeding the maximum flight time of the sUAV.
The evaluation of the sUAV and target heading angles in the
observation model provoked an increase in the number of
time steps to discard particles, as demonstrated in Figure 6.

The number of time steps was consistent for case study A,
with a median of 35 steps and an inter-quartile range of four
steps. When the number of target particles covers a bigger
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Figure 6: Time steps of successful runs under location
uncertainty.

region in the flying area, so is the number of required actions
(spins) to evaluate different heading angles. In fact, the
median number of time steps almost doubled for case study B
and a evident greater variability on time steps for case study
C.

Orientation Uncertainty

The sUAV navigation task and the POMDP observation
model were also evaluated by varying the heading (or orienta-
tion) of the child. The child was placed using four orientation
configurations, as shown in Figure 7. For each configuration,
the distribution of possible locations (location uncertainty)
for the dummy followed the settings of case study A.

(a) ψr − ψt ≈ 0◦ (b) ψr − ψt ≈ 90◦

(c) ψr − ψt ≈ 180◦ (d) ψr − ψt ≈ 270◦

Figure 7: Dummy child at different orientation configura-
tions.

The success rate per case study is illustrated in Table 4.

The sUAV was able to navigate and detect the child with
a mean success rate of 98%. Indeed, the lost child was

Table 4: Success rates for defined levels of target uncer-
tainty under SITL.

Case Study Success Rate
(Target found)

Failure Rate
(Crash)

Failure Rate
(Timeout)

A 100% 0% 0%
B 97.5% 2.5% 0%
C 100% 0% 0%
D 95% 5.0% 0%

always found when the particle distribution surrounded the
child location at different orientations. The distribution of
time steps for all the episodes is illustrated in Figure 8.

20 25 30 35 40 45

0◦

time steps

20 40 60 80 100 120

90◦

time steps

20 25 30 35 40 45

180◦

time steps

25 30 35 40 45

270◦

time steps

Figure 8: Time steps of successful runs under orientation
uncertainty.

The median number of time steps for the sUAV while col-
lecting child frames was the lowest when its image repre-
sentations were aligned with the sUAV (ψr − ψt ≈ 0◦), as
depicted in Figure 4. Conversely, an alignment difference
of 180◦ resulted in a bigger number of time steps to detect
the child. The big variance and outliers in time steps for
alignment differences of 90◦ and 270◦ happened because
of the partial occlusion from the table, requiring a higher
number of actions for the sUAV to get a clear visual of the
child. This variance also illustrates the adaptability of the
sUAV in a environment under uncertainty, given the way
PX4 Gazebo SITL emulates stochastic odometry errors in the
drone and external disturbances in the environment.

7. CONCLUSIONS
This paper introduced a solution to the problem of searching
victims with a prior probability with respect to the likely
location of the victims. The problem was formulated as a
Partially Observable Markov Decision Process to solve the
task as a multi-objective sUAV navigation problem that in-
corporates uncertainty and partial observability represented in
state belief. The proposed framework was validated on SAR
mission simulated in an indoor cluttered environment under
different levels of location and orientation uncertainties. The
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experiments were tested using PX4, Gazebo SITL, ROS, an
Intel VPU for deep learning inference (HITL) and TAPIR.

The problem formulation and system architecture consti-
tute a substantial extension on previous contributions on
autonomous sUAV decision-making for target finding under
uncertainty. Specifically, the proposed system presents an
extension on the work of Vanegas et al. [37] by incorporating:

• An observation model that incorporates target detection
uncertainty for vision-based object detectors.

• Experimentation close to real-world conditions under
SITL and HITL capabilities.

• Onboard target detection using deep learning and VPUs
for real-time inference under resource-constrained hard-
ware.

The results demonstrate the capability of the proposed system
to deal with high levels of environment and target detection
uncertainty as well as progress towards automating surveil-
lance operations for applications that require rapid interven-
tion such as SAR.

APPENDIX
System Identification

Motion response of the plant (i.e. sUAV) is collected by
measuring the robot’s position values y(t) under a step re-
sponse r(t) in x, z and ψ from the world coordinate frame.
As an illustration, the process to identify the system under
a step position response in x is illustrated herewith. First,
the transfer function of the plant was calculated using the
System Identification Toolbox™ from MATLAB®, as shown
in Equation 33.

F (s) =
0.204s+ 1.136

s2 + 1.253s+ 1.134
(33)

The calculation of the plant in time discrete is done using
the Tustin approximation method, which is defined in Equa-
tion 34,

s ≈ 2(z − 1)

Ts(z + 1)
(34)

where Ts is the sampling period. Assuming Ts = 0.1s, the
discretised plant F (z) equals:

F (z) =
0.01224 + 0.005333z−1 − 0.006905z−2

1− 1.872z−1 + 0.8824z−2
(35)

The difference equation from F (z) is calculated by applying
the inverse Z transform:

F (z) =
Y (z)

R(z)

Y (z) =

(
A0 +A1z

−1 +A2z
−2)R(z)

1 +B1z−1 +B2z−2

y(k) = A0r(k) +A1r(k − 1) +A2r(k − 2)

−B1y(k − 1)−B2y(k − 2)
(36)

where
A0 = 0.012237830217107

A1 = 0.005333276901521

A2 = −0.006904553315587

B1 = −1.871779712793530

B2 = 0.882425299507294

The value of ∆xrt is ultimately calculated by iterating Equa-
tion 36 every Ts seconds until reaching the total duration per
time step.
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Chapter 4 

UAV Framework for Autonomous 
Onboard Navigation and People/Object 
Detection in Cluttered Indoor 
Environments 

WITH UAVs providing a fexibly deployed eye in the sky to inaccessible or dangerous areas, frst 

responder efforts are optimised in emergency scenarios. However, it is the suboptimal reliance 

on communication systems from the UAV, and the need for outstanding photo-interpretation skills 

from the UAV operator about the environment, location of obstacles, and objects to detect (i.e., vic-

tims) that ultimately compromises aircraft behaviour in indoor fight operations, particularly where 

GNSS signals are weak or absent. 

This chapter presents the second published paper from this research and establishes a UAV frame-

work for autonomous navigation in cluttered indoor scenarios under uncertainty and partial ob-

servability. This framework design allocates required computational resources to run the POMDP-

based motion planner and inference of CNN object detectors onboard a companion computer at-

tached to the UAV frame. This paper extends the problem formulation, software, and hardware tools 

presented in paper 1, Chapter 3. The framework was tested in a SAR case study where a sub 2 kg 

UAV detected and located victims inside a simulated offce building. The framework was successfully 

evaluated using HIL simulations and real fight tests, ensuring personal safety of human operators by 

enabling the UAV to remotely survey dangerous environments. 
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Abstract: Response efforts in emergency applications such as border protection, humanitarian
relief and disaster monitoring have improved with the use of Unmanned Aerial Vehicles (UAVs),
which provide a flexibly deployed eye in the sky. These efforts have been further improved with
advances in autonomous behaviours such as obstacle avoidance, take-off, landing, hovering and
waypoint flight modes. However, most UAVs lack autonomous decision making for navigating
in complex environments. This limitation creates a reliance on ground control stations to UAVs
and, therefore, on their communication systems. The challenge is even more complex in indoor
flight operations, where the strength of the Global Navigation Satellite System (GNSS) signals is
absent or weak and compromises aircraft behaviour. This paper proposes a UAV framework for
autonomous navigation to address uncertainty and partial observability from imperfect sensor
readings in cluttered indoor scenarios. The framework design allocates the computing processes
onboard the flight controller and companion computer of the UAV, allowing it to explore dangerous
indoor areas without the supervision and physical presence of the human operator. The system is
illustrated under a Search and Rescue (SAR) scenario to detect and locate victims inside a simulated
office building. The navigation problem is modelled as a Partially Observable Markov Decision
Process (POMDP) and solved in real time through the Augmented Belief Trees (ABT) algorithm.
Data is collected using Hardware in the Loop (HIL) simulations and real flight tests. Experimental
results show the robustness of the proposed framework to detect victims at various levels of location
uncertainty. The proposed system ensures personal safety by letting the UAV to explore dangerous
environments without the intervention of the human operator.

Keywords: partially observable Markov decision process (POMDP); machine learning; search and
rescue (SAR); probabilistic decision-making; embedded systems; computer vision; autonomous
system; unmanned aerial system (UAS); path planning; artificial intelligence

1. Introduction

High resolution satellite and aircraft imagery has and can assist in relief efforts after natural
disasters such as earthquakes, floods, landslides and bush/forest fires. Earthquakes alone are
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estimated to have claimed the lives of almost 1.87 million people in the last century [1]. Research has
demonstrated how urbanisation can increase risks to population from natural disasters in vulnerable
areas [2]. Recent studies indicate that more than 40% of human fatalities caused by earthquakes occur
by weak and collapsed building structures [3]. Therefore, studies on improving disaster management
efforts in urban and peri-urban indoor areas are key to decrease the number of fatalities.

Intelligent aerial platforms such as Unmanned Aerial Vehicles (UAVs)—commonly referred
as drones—have improved response efforts in time-critical applications such as border protection,
humanitarian relief and disaster monitoring [4]. Small UAVs—UAVs whose Maximum Take-off Weight
(MTOW) is lower or equal to 13.5 kg [5]—have offered portability and versatility to their users thanks
to advances in autonomous behaviours such as obstacle avoidance, highly stable take-off, landing,
hovering and waypoint flight modes, as well as extensive payload adaptability [6,7].

The contribution of UAVs in time-critical applications such as Search and Rescue (SAR) has
become significant in recent years. Reported key areas on the use of UAVs post-disasters include
aerial monitoring of damage evaluation, localisation of victims, SAR logistics and cargo delivery [8,9].
UAVs have also assisted through the rapid post-disaster assessment of damaged buildings after an
earthquake [10,11], the custom design of defibrillator payloads [12,13] and the deployment of first aid
kits in remote areas [14]. Recent research has also showed how UAVs can provide fast assessments
on the identification of victims and their conditions. A remote sensing life signs detector for multiple
victims, for instance, has been developed using a UAV and a vision-based algorithm [15]. Similarly,
automated detection of victims using computer vision is now possible by manually flying small
UAVs above them [16]. Despite these advances, operational software limitations of UAVs to navigate
autonomously in unknown environments have impeded their use in more real-world scenarios [17,18].
Developing autonomous decision-making processes in UAVs is a challenging issue that has attracted
the attention of the research community [19].

Whenever an emergency situation occurs, it is of utmost importance to evaluate the environment
conditions to identify critical zones that require immediate intervention and to coordinate adequate
response [20]. Real-world emergency environments are dynamic, complex, unknown or partially
known. Adding cognition capabilities in UAVs for environments under uncertainty is a problem
that can be evaluated using decision-making theory. Applied theory on decision making addresses
not only autonomous UAV navigation problems but it is also used in fields such as game theory,
navigation strategies, Bayesian principles, multi-objective decision-making, Markov Decision Processes
(MDP) and Partially Observable MDPs (POMDP) [21–23]. Research has shown how modelling UAV
navigation problems with POMDPs in environments with high levels of uncertainty is a suitable
approach. For instance, Vanegas and Gonzalez [24] developed an autonomous navigation framework
for a GNSS-denied cluttered environment using small UAVs. The framework was evaluated using
Partially Observable Monte Carlo Planning (POMCP) [25] and Augmented Belief Trees (ABT) [26],
two of the fastest POMDP online solvers known up to date. Despite the potential shown in the
proposed framework by giving the UAV the capability of making decisions in seconds with ABT,
the authors narrowed their tests using black and white rectangular augmented reality markers [27].
The POMDP solvers were also run using an external workstation and their action commands sent to
the UAV. As sustained by Carrio et al. [19] and Valavanis and Vachtsevanos [28], it is undesirable to
depend on communication modules for autonomous UAV navigation because if such modules fail, the
UAV performance might become seriously compromised.

Research by Ragi and Chong [29,30] also presented significant progress, where dynamic
path-planning in multiple target tracking was accomplished using POMDPs. Reported progress
towards fully autonomous UAVs by including path planning, collision avoidance, external wind
disturbance effects and tracking evasive threats in their problem formulation, showed the prospects
of modelling multi-objective problems using POMDPs. The tests conducted by the authors were
carried out in simulation environments only and did not provide evidence on the use of the
framework in a real-world UAV target tracking application. Similarly, Bravo et al. [20] and Waharte
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and Trigoni [31] tested humanitarian relief operations with POMDP frameworks in simulation,
suggesting the demand to validate existing approaches with real flight tests and more realistic disaster
situations. Similar advances on autonomous UAV navigation using POMDP-based theory include
POMDP-lite [32], Anytime Meta PLannEr (AMPLE) [33], Mixed Observability Markov Decision Process
(MOMDP) [34] and decentralised POMDP [35]. Nevertheless, most of the proposed solvers have only
been tested in simulation environments. Validation of these approaches with real UAV flight tests in
complex environments is still an unresolved gap [36,37].

Literature on onboard autonomous UAV decision-making in GNSS-denied environments and
time-critical applications using POMDPs is scarce. The study from Chanel et al. [38] shows one of the
most significant approaches through the development of a multi-car detection application using an
optimised UAV framework. The designed framework allows running a POMDP onboard the UAV
and optimised during execution. However, missing experimentation details such as the UAV frame,
drivers, companion computer and algorithms for computer vision have impeded reproducing their
research work.

This paper describes a UAV framework for autonomous navigation under victim detection and
location uncertainty in complex GNSS-denied scenarios. The framework details a system architecture
for onboard execution of computer vision and decision-making methods in resource-constrained
hardware, removing the dependency of the UAV on external ground control stations and
communication systems, so it can interact with the environment by itself and accomplish the flight
mission. The problem is mathematically formulated as a POMDP, which allows modelling uncertainty
using probabilistic distributions. The POMDP model is implemented in software through the Toolkit
for approximating and Adapting POMDP solutions In Real time (TAPIR) [39], which encapsulates the
ABT algorithm for real-time decision making.

The framework is illustrated with an indoor SAR scenario to detect victims in office buildings.
The UAV system was tested by defining three (3) case studies of situational awareness on the victim
hypothetical location: (i) a single survey patch from the surveyed environment; (ii) two survey patches
covering two areas of interest; (iii) a survey patch covering the entire flying area. The evaluations are
separated into two groups: experiments designed to incorporate Flight Controller Units (FCU) and
companion computers in Hardware in the Loop (HIL) simulations, and experiments with real flight
tests. Experimental results show how the formulation of the problem as a POMDP optimises UAV
behaviour by calculating robust path planning under unstable UAV motion response. More importantly,
the results indicate the potential of the system to ensure rapid monitoring (for the identification and
location of possible victims in office buildings) and personal safety by letting the UAV to explore
dangerous environments without the intervention of the human operator.

This paper extends the published work by Sandino et al. [40] through the following primary
contributions:

• A more detailed description of the entire UAV framework and system architecture rather than the
POMDP problem formulation for autonomous UAV navigation in GNSS-denied environments.

• An improved observation model of target detection uncertainty, which introduces a summary
statistic that measures detection frequency (to account for false positive detections).

• An improved cost function which contains more reward variables for better UAV behaviour
(i.e., distance calculation between UAV and victim, and added memory capability for analysis of
traversed path).

• Better onboard object detector performance by applying rotation transformations on input camera
frames to detect victims at various visual perspectives.

• Validation of the proposed framework using real flight tests.
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2. Background

This section describes the fundamentals of POMDP planning and Augmented Belief Trees (ABT),
the online solver used in this work. A comprehensive review of POMDP and ABT can be found in the
research works by Dutech and Scherrer [41] and Kurniawati and Yadav [26], respectively.

2.1. Partially Observable Markov Decision Processes

The main focus of autonomous UAV decision-making systems is to generate sequences of actions
to avoid obstacles, explore unknown areas and detect objects of interest (i.e., victims). The information
acquired about the surveyed environment and their targets is in most cases, however, inaccurate due
to imperfections in the UAV sensor readings, occlusion from obstacles and challenging surveying
conditions. These imperfections restrict the inference of the actual conditions of the environment
(e.g., search extent, obstacles, wind disturbances) and victims (e.g., location, classification, quantity).
A possible approach to model sequential decision-making processes when dealing with high levels of
uncertainty is based on POMDPs [41].

A POMDP is defined by the tuple 〈A, S, O, T,Z , R, b0, γ〉 [42], where A is a finite set of UAV actions,
S is a finite set of states, and O is a finite set of collected observations from the environment. Whenever
the UAV takes an action a ∈ A from a state s ∈ S, the UAV moves to a new state s′ ∈ S with probability
T(s, a, s′) = P(s′ | s, a) and receives an observation o ∈ O with probability Z(s′, a, o) = P [o | s′, a].
Each taken action is also valued with a reward or cost function R, defined as the expected reward after
taking an action a ∈ A from state s ∈ S.

Considering that the UAV is limited to obtain partial information of real system states through
its collected observations, it generates a belief b, defined as a probability distribution over the system
states S. A belief b can be defined as follows:

b(H) = P[s1 | H], · · · ,P[sn | H], (1)

H = a0, o1, R1, · · · , at−1, ot, Rt, (2)

where H is the history of actions, observations and rewards that the UAV has experienced until time
step t. The UAV always starts the planning with an initial belief b0, which is generated based on
the initial conditions (and assumptions) of the problem (i.e., situational awareness). Given a belief
b, a POMDP is solved once it finds a sequence of actions that maximises the discounted cumulative
reward. The motion policy π of the UAV is represented by mapping belief states to actions π : b→ A.
The optimal policy π∗ is calculated as follows:

π∗ := arg max
π

(
E
[

∞

∑
t=0

γtR (St, π (bt)) | b0, π

])
, (3)

where γ ∈ [0, 1] is the discount factor, which determines how much immediate rewards are preferred
over more distant rewards.

2.2. Augmented Belief Trees

Finding the exact solution of a POMDP is deemed to be a computationally intractable problem [43].
However, recent approaches have made substantial progress on creating algorithms that approximate
the solution such as Partially Observable Monte Carlo Planning (POMCP) [25]. Nevertheless,
most of the available online POMDP solvers recompute policies at every time step from scratch,
wasting computational resources which can impact the performance of resource-constrained hardware
devices, such as onboard computers in small UAVs. Therefore, this work uses the ABT solver [26],
which contains methods to reuse previous computed policies and update the policy after detecting
changes in the POMDP model. Compared to other online POMDP solvers, ABT allows declaring
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continuous variables for states and actions (rather than discrete values) to calculate the approximated
optimal policy.

ABT contains a method for planning and execution in real time with augmented belief trees.
The process is divided into two parts: preprocessing (or offline policy estimation) and runtime (or
online policy update). Once ABT is run to generate an offline policy from the POMDP model, the UAV
executes a first action. Afterwards, the UAV collects an observation and the ABT updates the belief
states based on the collected observation. Subsequently, ABT updates the policy online and executes
the next action. The solver approximates the optimal motion policy by maintaining a set of multiple
sampled episodes. Instead of providing explicit probability distributions for T and Z , ABT uses a
generative model. A generative model is a black box simulator that outputs observations, rewards and
next states once the UAV performs an action from a current state.

3. System Architecture

The proposed system architecture allows fully autonomous decision-making onboard small
UAVs in unknown GNSS-denied environments. Following the POMDP terminology introduced in
Section 2.1, Figure 1 illustrates the system modules of the UAV (also known as the agent in sequential
decision-making theory), and the interaction between the UAV, the surveyed environment and the
operator.

Operator

Ground Control Station

Environment

Victim

Agent

Small UAV

Computer Vision Module

Raw Frames

CNN Object Detector

Vision Processing
Unit (VPU)

Decision-making Module

Observations

POMDP Solver

Action Commands

Motion Module

Local Position
Estimator

Flight Controller

Motors

A

Drivers

Visual
OdometrySLAM

RC input

IMU Drivers

Telemetry

Distance
Sensor

Wi-Fi

Radio

Companion Computer

Flight Controller Unit (FCU)

Sensors

Actuators

Peripherals

A

Vision-based sensors

Figure 1. Proposed modular system architecture for an autonomous onboard navigation in Global
Navigation Satellite System (GNSS)-denied environments in small Unmanned Aerial Vehicles (UAVs).
It is composed of a computer vision module, which processes raw data from vision-based sensors,
a decision-making module which sends low-level action commands to the flight controller, and a
motion module that controls the dynamics of the UAV via a set of drivers mounted in the UAV frame.

The UAV contains a set of modules to distribute operations such as collecting and processing data
from the environment (computer vision), evaluating the optimal sequence of actions to accomplish
the flight mission (decision-making) and managing the speed of the actuators to control the dynamics
(or motion) of the UAV. The computer vision and decision-making modules are run on a companion
computer attached to the UAV frame, whereas the motion module is managed by the onboard
FCU. The UAV also includes a set of drivers to assist the local position estimation in GNSS-denied
environments and peripherals to establish communication to the operator. The operator receives
real-time telemetry and decides whether to let the UAV interact with the environment or regain
manual control using the remote control.
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For every interaction cycle while operating the UAV in autonomous mode, the UAV starts
capturing data from vision-based sensors in the form of image frames. Those frames are read by the
computer vision module which processes these observations into percepts for the decision-making
module. The current implementation of this module uses a Deep Convolutional Neural Network
(D-CNN) to detect victims. A D-CNN is an artificial neural network designed for processing structured
data arrays such as images [44]. The module contains dedicated hardware to meet the computational
demand of running D-CNNs on resource-constrained hardware via Vision Processing Units (VPUs).
Information produced by the computer vision module details whether a victim is detected in the frame,
and if detected, the estimated location of the victim and a summary statistic about the confidence of
the detection. The decision-making module reads this data as well as the estimated local position
of the UAV (from the motion module) as observations. Then, the POMDP solver determines the
corresponding motion command for the next iteration. Finally, these actions are passed to the flight
controller which ultimately sends appropriate control signals to the actuators and manoeuvre the
aircraft to the desired position.

The UAV requires a set of external sensors from the FCU to successfully operate in GNSS-denied
environments. In this implementation, estimations of local UAV positioning are achieved using Light
Detection and Ranging (LiDAR)-based distance and visual odometry sensors. It is common when
working with visual odometry sensors to externally run (using a companion computer, fox example)
visual Simultaneous Localisation and Mapping (SLAM)-based algorithms to provide the FCU with
relevant pose and twist data. Modern FCUs contain dedicated algorithms to read localisation data
from multiple sensory systems (i.e., IMU, distance sensor and SLAM output) and estimate the local
UAV position in real time.

4. Framework Implementation

The implemented hardware and software (i.e., framework) is designed to be as modular as possible
based on the system architecture presented in Section 3. First, the paper presents UAV frame, drivers
and payload, followed the software communication interface of the system, and software solutions to
implement the computer vision and decision-making modules onboard the UAV companion computer.

4.1. UAV Frame and Drivers

The current implementation consists of but it is not restricted to the UAVs and sensors mentioned
below. The UAV frame used is a Holybro S500 multi-rotor kit (Holybro, China), which offers a
right balance between payload adaptability and size to navigate in cluttered indoor environments.
The aircraft features a Pixhawk 4 R© autopilot (i.e., onboard FCU), 22.86 cm plastic propellers,
2212 KV920 brushless motors, and 433 MHz Telemetry Radio. The aircraft length × width × height
dimensions are of 38.3 cm × 38.5 cm × 24.0 cm, with a total load payload capacity of 0.4 kg. The UAV
uses a four (4) cell 5000 mAh LiPo battery which provides an approximate flight autonomy of 10 min
payload-free and eight minutes with the sensor payload and companion computer mounted in the
frame. An illustration of the UAV frame with its payload, companion computer and drivers is shown
in Figure 2.

The companion computer which runs the computer vision and decision-making modules is an
UP2 (AAEON Technology Inc., New Taipei City, Taiwan). The computer features a 64-bit quad-core
Intel R© Pentium R© N4200 processor at 1.1 GHz, 8 GB DDR3 RAM, 64 GB eMMC SSD, four FL110
USB 3.0 connectors, two Ethernet controllers, two High-Speed UART controllers, an Intel R© Dual
Band Wireless-AC 3165 and one mPCIe connector. The UP2 is selected here against similar computer
boards owing to its competitive price tag for its provided features, peripherals and the familiar 64-bit
CPU architecture.

The UAV requires several sensor drivers to estimate its local position in the absence of GNSS.
For these experiments, the list of sensors is composed by the embedded Pixhawk 4 R© IMU, a TFMini
Plus range sensor (Benewake, Beijing, China) pointing downwards which provides the UAV altitude,
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and an Intel R© Realsense
TM

T265 tracking camera (Intel Corp., CA, US) pointing to the front from the
UAV frame. The T265 sensor uses a closed source SLAM software implementation for local position
and motion estimation. Configuring the camera to the front improves the reliability of the sensor
readings by capturing and detecting more objects (e.g., obstacles, walls, floor and victims) than by
pointing the camera to the ground. Collected observations from the environment are performed with
a HBV-1615 Red Green Blue (RGB) camera, mounted in a downward-looking configuration from
the UAV frame (Figure 2b). The camera features a resolution of 640 × 480 pixels, focal length of
2.484 mm, sensor width of 1.968 mm and sensor height of 1.488 mm. It is worth mentioning that other
multi-rotor UAVs, companion computers and drivers with similar characteristics can also be utilised
for the proposed system architecture depicted in Figure 1.

1

2

3

4

(a)

5

6
7

(b)

Figure 2. Proposed UAV frame with mounted drivers, companion computer and payload. (a) Front
view of the UAV displaying: (1) Holybro S500 frame; (2) Pixhawk 4 R© flight controller; (3) UP2

companion computer; and (4) Intel R© Realsense
TM

T265 tracking camera. (b) Lateral view of the UAV
displaying: (5) 433 MHz telemetry radio; (6) HBV-1615 RGB camera; and (7) TFMini Plus range sensor.

4.2. Operating Systems and Middleware

The system modules implemented in the companion computer are developed for 64-bit Linux
Operating Systems (OS) and run in Ubuntu Server 18.04. Communication between the vision-based
sensors, and computer vision and decision-making modules is achieved using the Robot Operating
System (ROS) Melodic [45] middleware. The flight controller runs under NuttX (a real-time OS) and the
PX4 flight control software [46]. The PX4 architecture consists of: 1) a flight stack layer, which details
a pipeline if flight controllers for multi-rotors, fixed-wing and vertical take-off and landing (VTOL)
UAVs, altitude and position estimators, and; 2) A middleware layer, which contains the device drivers
for multiple UAV sensors, communication interfaces, and a simulation layer to enable Hardware in the
Loop (HIL) capabilities of the FCU.

Communication between the decision-making module (from the companion computer) and the
motion module (from the FCU) is done using MAVROS via a High-Speed UART interface. MAVROS
is a ROS wrapper of the Micro Air Vehicle Link (MAVLink) protocol, an industry standard for UAV
communication [47]. Telemetry to the ground control station was performed using QGroundControl
via Wi-Fi and the Holybro 433 MHz Telemetry Radio (Holybro, China).

4.3. Computer Vision Module

This module consists of a deep learning object detector processing raw frames from the HVB-1615
RGB camera. Taking into account the performance limitations of running deep learning models
in resource-constrained hardware, a Vision Processing Unit (VPU) is installed to the companion
computer. The use of a VPU boosts the computations that allow inference in deep learning models by
optimising convolutional operations in its microprocessor. In this implementation, the selected VPU is
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an Intel R© Movidius
TM

Myriad
TM

X, which is connected to the companion computer via the mPCIe slot.
The detection module is programmed in Python and uses the OpenVINO library that allows a direct
interface between various deep learning frameworks and the VPU. OpenVINO supports TensorFlow,
Caffee, PyTorch, among other deep learning frameworks. Standard image processing methods are also
covered by OpenVINO through optimised versions of the OpenCV and OpenVX libraries.

The used deep learning model architecture to detect persons is an off-the-shelf Google MobileNet
Single-Shot Detector (SSD) [48]. This model is deployed in Caffe [49] and tuned with pre-trained
weights from the PASCAL VOC2012 dataset [50], scoring a mean average precision of 72.7%.
The dataset covers up to 21 class objects (including persons). However, only positive detections
for the class person are evaluated. Acquired camera frames are fitted into the input layer of the neural
network (i.e., MobileNet SSD model) by shirking the frames into dimensions of 300 × 300 pixels.
Once inference is performed onto the fit model, positive detections of persons with a score confidence
(from the output layer of the neural network) greater than 60% are depicted in the processed frame
and shown to the human operator for telemetry purposes, as displayed in Figure 3.

(a) (b)

Figure 3. Victim detection trial using the proposed Google MobileNet Single-Shot Detector (SSD)
architecture from Chuanqi [48]. Detections with an output score confidence greater than 60% are
displayed in the processed frame. (a) Top view of the UAV flying above an adult mannequin. (b) Victim
detected with a confidence score of 78.42% after processing raw frames from the HBV-1615 RGB camera.

Taking into account the nature of PASCAL VOC dataset the object detector was trained for the
class person, the frequency and detection scores are significantly higher when the UAV is aligned
with the mannequin (as shown in Figure 3b) than with other visual representations. Consequently,
the object detector is unable to detect the mannequin if spatial transformations in the x or y axes are
applied. Similarly, there are slight chances to detect the mannequin if its lower body is occluded
by other objects. The optimal distance between the UAV and the mannequin to maximise the
detection scores ranges between 1 m and 10 m. In order to address these limitations on the
detections, image rotation transformations are applied on software for each input frame. A total
of six transformations (i.e., image rotations every 60◦) are processed for every read camera frame,
achieving, thus, an approximate processing speed of 2.9 Frames per Second (FPS).

4.4. Decision-Making Module

The decision-making module contains algorithms that translate information from the
environment (i.e., observations) into action commands. In this implementation, the decision-making
module contains the POMDP, in which the navigation problem is required to be formulated.
The decision-making module uses ABT—an online POMDP solver [26]—implemented on software
using TAPIR [39]. TAPIR is developed in C++ and requires the tuning of several hyper-parameters to
obtain the best possible approximation of the POMDP solution (i.e., optimal motion policy). Details on
assigned hyper-parameter values for TAPIR can be found in Section 5.2.3.
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This paper proposes an approach for a UAV to find a victim in cluttered indoor environments.
An example scenario, which is depicted in Figure 4, consists of a limited flying area, several obstacles
randomly placed, with weak or absent GNSS signal, and a static victim located inside the area to
be surveyed.

Figure 4. Example of a cluttered indoor environment for UAV Search and Rescue mission. The extent
of the free volumetric space area is restricted by randomly placed obstacles. The victim is always lying
on the ground and its location is static.

The estimation of the optimal motion policy allows the UAV to perform efficient obstacle
avoidance, victim detection and path planning for various uncertainty levels in the location of the
victim. The problem formulation is partially defined based on the following assumptions:

• The UAV pose and motion are estimated by a SLAM-based sensor (i.e., visual odometry)
embedded on the UAV frame.

• Observations come from real-time streaming of processed camera frames and the estimated local
UAV position from the FCU.

• Flying modes such as take-off and landing are also delegated to the FCU and automatically
triggered by the UAV, or the operator if they want to regain control on the UAV motion.

• The task starts after the UAV gets close enough to a chosen starting point.
• The task finishes once the victim is detected with high detection frequency (e.g., exceeding a

minimum threshold detection value), or if the UAV runs out of power resources (or timeout) to
keep flying before a detection is made.

The text below describes the problem formulation for the elements of the POMDP tuple,
which consists of the set of possible taken actions A by the UAV; the system states S; the motion
model of the system after an action a ∈ A is executed by the UAV; the system rewards and cost
function R; the collected observations O from the environment; the observation model; and the initial
belief b0. The problem formulation is presented as generic as possible in this section. Technical details
on the assigned values in the experiments are described in Section 5.

4.4.1. Actions (A)

In the current implementation, the UAV interacts with the environment by applying an action
a ∈ A. As shown in Table 1, seven actions have been selected in this paper. However, more actions
can be added as per problem requirements such as setting UAV yaw orientation and camera gimbal
angle commands.
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Table 1. Set of chosen actions for the problem formulation. Each action is a position command where δ

is the magnitude of change of position coordinates xu, yu and zu from time step k to time step k + 1.
Position values are referenced to the world coordinate frame.

a(k) ∈ A xu(k + 1) yu(k + 1) zu(k + 1)

Forward xu(k) + δx yu(k) zu(k)
Backward xu(k)− δx yu(k) zu(k)

Left xu(k) yu(k) + δy zu(k)
Right xu(k) yu(k)− δy zu(k)

Up xu(k) yu(k) zu(k) + δz
Down xu(k) yu(k) zu(k)− δz
Hover xu(k) yu(k) zu(k)

The above-mentioned actions are position commands defined in the world coordinate frame,
where δ is the magnitude of change of position coordinates xu, yu and zu from time step k to time
step k + 1. Assigning various values for δ allows flexibility in the speed of the UAV for big and small
flying areas. Other standard UAV actions such as take-off and landing are off-the-shelf commands
managed by the onboard FCU and triggered by the system before and after executing the POMDP
solver, respectively. A description of the initial conditions of the UAV is covered in detail in Section 5.

4.4.2. States (S)

For this implementation the system states consist of the UAV and victim states. The state of the
UAV is defined by the position of the UAV pu(xu, yu, zu) in the world coordinate frame; the UAV
instantaneous velocity vu = ṗu; the flag fcrash that defines whether the UAV has collided with an
obstacle; and the flag froi which specifies whether the UAV is navigating out of the limits of the region
to be surveyed. The victim state is defined by the position of the victim pv(xv, yv, zv) in the world
coordinate frame; the flag fdct that determines whether a victim has been detected by the UAV; and the
flag fconf that confirms the detection state of the victim, which is defined as:

fconf =

{
true if ζ ≥ threshold
false otherwise

, (4)

where ζ ∈ [0, 1] is the victim’s detection confidence between time steps. An expanded explanation of ζ

and its usage is covered in Section 4.4.5. In the current formulation, fcrash, froi and fconf are considered
terminal states (or stopping conditions). Other states such as states for a second or more victims can
also be added to the framework.

4.4.3. Motion Model

The motion model for a multi-rotor UAV is defined as:

pu(k + 1) = pu(k) + Xu(k)∆pu(k) (5)

which can be expanded as:




xu(k + 1)
yu(k + 1)
zu(k + 1)


 =




xu(k)
yu(k)
zu(k)


+




cos(ϕu(k)) − sin(ϕu(k)) 0
sin(ϕu(k)) cos(ϕu(k)) 0

0 0 1







∆xu(k)
∆yu(k)
∆zu(k)


 , (6)

where pu(k) is the UAV’s position at time step k; Xu(k) is a simplified multi-rotor rotation matrix
after assuming changes in the Euler angle values ∆ψ = 0◦, ∆θ = 0◦ and ∆φ = 0◦ [51]; ∆pu(k) is the
change in the UAV’s position from time step k to time step k + 1; and ϕu(k) represents pose estimation
errors in the Euler yaw angle of the UAV. This variable is modelled as a normal distribution with
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a mean of 0◦ and standard deviation of 3.0◦. An approximation of the dynamic model of the UAV
through changes in position (∆pu(k)) was conducted empirically using the UAV frame and a system
identification process. An expanded description for calculation of ∆pu(k) can be found in Section 5.

4.4.4. Rewards and Cost Function (R)

The cost function R is defined as follows:

R = raction + rcrash + rout + rdtc + rζ + rfov, (7)

where raction is the negative reward (or penalty) per action taken to encourage the UAV to find the
victim in the less number of possible action sequences; rcrash is the cost if the UAV crashes itself with
an obstacle; rout is the cost if the UAV flies beyond the survey area limits; rdtc is the reward if a victim
is detected (regardless of the confidence level), defined as follows:

rdtc =





ρ if victim is detected

−(ρ + rζ)
du

2 · la
otherwise

, (8)

where ρ is the constant reward value assigned to rdtc; du is the Manhattan distance between the UAV
and victim; rζ is the reward if the victim is detected with a high confidence level, defined by the
threshold ζ (as mentioned above in Equation (4)); and la represents the longest length of the search area.
Manhattan distance was chosen over Euclidean distance for du based on better UAV traversed paths
using the former in preliminary simulations. Adding du to the cost function aims to get the UAV closer
to the believed location of the victim and acquire camera frames with clearer visual representations
of them. Nevertheless, du might generate ambiguity and sub-optimal behaviour in the UAV if it is
surrounded by equidistant victim belief particles. In order to add memory about a path previously
traversed by the UAV, R includes rfov, which is the cost for any taken action that places the UAV in a
region that was previously explored. An illustration of the concept is shown in Figure 5.

(a) (b)

Figure 5. Example of a recorded trajectory. (a) Traversed path by the UAV. The figure is composed
by: The path of the UAV (orange splines); the environment obstacles (green blocks); the UAV position
belief (orange point-cloud); the possible victim location coordinates (red point-cloud); and the camera’s
Field of View (FOV) (purple rectangle). (b) Traced footprint using the camera’s Field of View (FOV).
Future actions that place the UAV inside the white areas trigger rfov.
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4.4.5. Observations (O)

The system observations consist of the available information about the state of the environment
and the UAV from its sensors. As previously illustrated in Figure 1, certain observations require a
pre-processing stage such as the detection and localisation of the victim from vision-based camera
frames. The current observations O are defined as:

O = (opu , oobs, odtc, opv , oζ), (9)

where opu is the position of the UAV in the world coordinate frame, which is obtained from the local
position estimator of the motion module; oobs is the flag that defines whether there is an obstacle in
front of the UAV, which is obtained by reading the location of the UAV inside an occupancy map object
(described in Section 4.4.8); odtc is the flag that determines whether a victim has been detected by the
computer vision module; and opv provides the location estimation of the victim, defined as:

opv =

{
(xv, yv, zv) if odtc = true

null otherwise
; (10)

observation oζ is a summary statistic that measures the frequency of victim detections between the last
and current observation calls (and referred as the detection confidence), defined as:

oζ =
∑ victim detections
∑ processed frames

. (11)

Other observations such as the orientation of the victim or similar object detection outputs from
two or more cameras are not implemented but can also be considered in the formulation.

4.4.6. Observation Model

Considering that ABT uses a generative model that outputs an observation o ∈ O, a reward R
and a next state s′ ∈ S based on a taken action a ∈ A from a current state s ∈ S, probabilistic transition
functions T and Z are not required to be explicitly declared. Therefore, the generative model requires
modelling a potential observation o given s′ and a. The observation model is composed by the local
position estimation of the UAV opu in the world coordinate frame, the local position of the victim opv if
it is detected by the vision-based sensors and the detection confidence oζ . Victim detection depends on
the footprint extent of the camera’s Field of View (FOV), which is defined by the sensor properties of
the camera and opu . The vertical and horizontal FOV angles are defined as follows:

FOVV = 2 tan−1
(

w
2 f

)
, (12)

FOVH = 2 tan−1
(

h
2 f

)
, (13)

where w is the sensor width; h is the sensor height; and f is the focal length of the camera. The extent
of the observed FOV area (or footprint) is calculated as:

ltop, bottom = pu(z) · tan(α± 0.5 · FOVH), (14)

lleft, right = pu(z) · tan(α± 0.5 · FOVV), (15)

where l is the footprint extent of the camera frame at its top, right, bottom and left limits, and α is the
pointing angle by the camera gimbal from the vertical z axis, as shown in Figure 6.
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Figure 6. Two-dimensional (2D) projection of vision-based sensors pointing to the ground, where W is
the world coordinate frame, I is the image coordinate frame, α is the camera’s gimbal angle from the
vertical, c∗ are the rectangular corners from the camera’s Field of View (FOV), and l is the footprint
extent of the FOV.

The two-dimensional (2D) projection corner coordinates of the camera’s FOV are defined as:

c1 = (ltop, lleft), (16)

c2 = (ltop, lright), (17)

c3 = (lbottom, lright), (18)

c4 = (lbottom, lleft). (19)

Following Equation (5), a transformation matrix is also applied to link the FOV corners to the
UAV reference frame:

[
c′(x)
c′(y)

]
=

[
pu(x)
pu(y)

]
+

[
cos(ϕu) − sin(ϕu)

sin(ϕu) cos(ϕu)

] [
c(x)
c(y)

]
(20)

where ϕu is the pose estimation error in the Euler yaw angle of the UAV (mentioned in Equation (5).
If the projected 2D point coordinate of the victim is located within the corner c points from the formed
rectangular footprint, the victim is assumed to be visualised in the camera’s FOV. As defined in
Equation (21), an angle θ is calculated as the sum of angles between the victim’s position and each pair
of points that comprise the FOV corners [52],

θ =
4

∑
i=1

{
tan−1

[
c′i+1(y)− pv(y)
c′i+1(x)− pv(x)

]
− tan−1

[
c′i(y)− pv(y)
c′i(x)− pv(x)

]}
. (21)

If θ = 2π, the coordinate point of the victim is inside the camera’s FOV. Nevertheless,
this calculation assumes perfect detection outputs from any vision-based model implemented in the
computer vision module. Uncertainty from computer vision models (including deep learning detectors)
come from factors such as noise from the camera frames, poor illumination conditions, low image
resolution, occlusion from obstacles and sub-optimal camera settings. Even though it is possible
to allocate extra resources to improve the performance of these object detection models, this paper
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presents an approach that covers detection uncertainty. Some factors that cause uncertainty such as
the display of false positives are simulated here by incorporating the object detection confidence ζ and
evaluating such confidence with thresholds ζthres in the problem formulation. In this implementation
ζ is modelled using a linear regressor, defined in Equation (22):

ζ =
1− ζmin

maxz −minz − g
(du −minz − g) + ζmin, (22)

where ζmin is the minimum detection confidence threshold; minz and maxz are the minimum and
maximum allowed flying altitudes respectively; g is the distance gap applied to minz; and du is the
Manhattan distance between the UAV and the victim.

4.4.7. Initial Belief (b0)

Formulating the problem as a POMDP allows modelling uncertainty and partial observability with
probabilistic data distributions. The proposed system contains two sets of belief states: The position of
the UAV, and the position of the victim. The position of the UAV is defined as a normal probability
distribution with mean µpu and standard deviation σpu . As previously shown in Figure 5a, the position
of the victim can be defined as a uniform probability distribution or as a set of one or more normal
distributions placed across the flying area. This capability allows the rescue personnel and UAV
operator to freely define possible areas where a victim could be located, following the concept of
situational awareness in SAR operations. Details on the specific configurations used in the experiments
can be found in Section 5.2.2.

4.4.8. Obstacle Avoidance

The decision-making module relies on the concept of occupancy maps for obstacle avoidance.
Occupancy maps are represented in three-dimensional (3D) occupancy grids whose cells contain
binary values for the specific volumetric representation of space such as free, occupied or unknown.
The occupancy map for this task was generated using the Octomap library [53], which allow the
creation of occupancy maps using 3D point clouds, data that is commonly acquired from depth
cameras and LiDAR sensors. In this work, the octomap of the environment was generated manually
and read by the decision-making module prior to any flight campaigns (in simulation and hardware).

5. Experiments

The presented system is tested for a victim finding mission in a cluttered indoor environment
using HIL simulations and real flight tests. The text below describes the environment setup and
assigned values to the formulated POMDP problem presented in Section 4.4.

5.1. Environment Setup

The search area has length×width× height dimensions of 6 m× 6 m× 3 m. As shown in Figure 7,
the surveyed area contains several obstacles in the shape of columns, the victim is lying on the ground
and located at the opposite end from the take-off position of the UAV. The victim and column obstacles
are static and no disturbances such as wind or variable light conditions are applied to the setup.
Due to the limited flying space available in the testing facility for hardware tests, it was not possible to
evaluate the system in an environment with bigger dimensions that suit more realistic SAR operations.
However, the focus and contribution of this paper relies on: introducing a framework for autonomous
UAV operations in GNSS-denied environments under partial observability; illustrating a system
architecture that incorporates and executes computer intensive deep learning models (for realistic
object detection) and online POMDP solvers onboard resource-constrained hardware; and presenting a
proof of concept of the system robustness in SAR scenarios, with the potential of operating the system
in more challenging conditions.
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(a) (b)

Figure 7. Environment setup for autonomous UAV victim finding in HIL simulations and real-flight
tests. The victim is static and is always located at the opposite end from the take-off position of the
UAV. (a) Isometric view of the environment simulated in Gazebo. (b) Top view of the environment
simulated in Gazebo.

The example environment is validated with HIL simulations and hardware experiments.
Simulation experiments are executed using a desktop workstation, replicating the environment setup
using the Gazebo ROS Simulator. The desktop workstation features a 64-bit 12-core Intel R© Core R©

i7-8700 CPU at 3.2 GHz, a 32 GB DDR4 RAM, a 512 GB eMMC Solid State Drive, a 6 GB NVIDIA
GeForce GTX 1060, six (6) USB 3.0 ports and an Ethernet controller.

Hardware experiments are conducted at the Queensland University of Technology (QUT) Da Vinci
Precinct (DVP) hangar area, 24/22 Boronia Rd, Brisbane Airport, QLD 4008, Australia. Data collection
campaign occurs in four (4) opportunities from the 25 June 2020 to the 2 July 2020 between 11:00 a.m.
and 3:00 p.m. For safety reasons, an adult mannequin is used as the victim to be detected, as shown
in Figure 8. Illumination conditions are controlled by exposing the setup with a constant light
intensity from fluorescent light bulbs. No external wind disturbances are applied during the data
collection process.

(a) (b)

Figure 8. Environment setup for hardware experiments. For safety reasons, an adult mannequin is used
as the victim to be detected and column obstacles are replaced with carpet tiles. (a) UAV navigating
inside a netted area at the Queensland University of Technology (QUT) Da Vinci Precinct (DVP) hangar.
(b) Top view of the setup with the mannequin displayed at the bottom.
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In the setup neither a depth camera nor LiDAR sensor is included in this framework
implementation. The system is therefore limited to operate using a fixed occupancy map of the
environment. Despite this limitation, the proposed framework allows extending the system capabilities
by incorporating any of the above-mentioned sensors to the UAV frame and updating the map
mid-flight using the Octomap library flawlessly. Taking into account that local UAV position
estimations from the visual odometry sensor (i.e., T265 tracking camera) are not corrected from any
ground truth data source, the environment column-shaped obstacles (Figures 7 and 8a) are replaced by
carpet tiles to ensure the integrity of the aircraft in real flight tests (Figure 8b).

5.2. POMDP Problem Formulation

The text below describes the assigned values for variables presented in the POMDP formulation
(Section 4.4). They consist of the approximated response of the controlled UAV dynamic system,
the case studies of situational awareness (or initial belief) on the victim’s position, and TAPIR
hyper-parameter values.

5.2.1. Controlled UAV System Response

In this research, the position changes of the UAV (∆pu(k)) are modelled by identifying the transfer
function of the entire controlled UAV system, composed by the controller, the UAV motors, sensors and
feedback loop. Consider y as the independent position response of the UAV for the x, y and z Cartesian
frame. A step response of the aircraft y(t) is measured after triggering a constant position setpoint
r(t) = 0.5 m. For each coordinate axis, incremental and decremental step responses are recorded for
five seconds between each change using a VICON motion capture system (Vicon, Oxford, UK) as
ground truth. The recorded data is processed using the MATLAB R© System Identification Toolbox

TM
,

which estimates the transfer function of the UAV in the frequency domain (s). The transfer functions
of the UAV for x, y and z in the frequency domain are defined as follows:

Fx(s) =
0.204s + 1.136

s2 + 1.253s + 1.134
, (23)

Fy(s) =
0.2875s + 0.9085

s2 + 0.9825s + 0.9227
, (24)

Fz(s) =
0.8068s3 + 0.7306s2 + 1.041s + 0.1368

s4 + 1.561s3 + 1.653s2 + 1.175s + 0.1367
. (25)

Afterwards, the transfer functions were discretized using the Tustin approximation method,
defined in Equation (26):

s ≈ 2(z− 1)
Ts(z + 1)

, (26)

where Ts (i.e., Ts = 0.1 s) is the sampling period. The UAV motion ∆pu(k) is calculated by obtaining the
difference equation of the discretized system F(z) after applying the inverse Z-transform, as defined
from Equation (27) to Equation (30):

F(z) =
Y(z)
R(z)

, (27)

y(k) = Z−1F(z)Z−1R(z), (28)

y(k) =
N

∑
i=0

air(k− i)−
N

∑
i=1

biy(k− i), (29)

∆pu(k) = y(Ts
−1)− y(0), (30)
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where N is the order of the transfer function F(s); r(k− i) and y(k− i) represent previous setpoint and
response values respectively; and ai and bi are the numerical constants for each r(k− i) and y(k− i)
function variables.

5.2.2. Uncertainty and Initial Belief (b0)

As shown in Figure 9, the possible location of the victim was evaluated following three case
studies, which are inspired on available information (situational awareness) from a SAR perspective:
(1) single cluster of position points following a normal probability distribution with mean µ1pv

and
standard deviation σpv (Figure 9a); (2) two position clusters defined as normal probability distributions
with the second cluster declared with mean µ2pv

and standard deviation σpv (Figure 9b); (3) a uniform
probability distribution assuming that there is no knowledge of where the victim might be located in the
surveyed area (Figure 9c). It is worth mentioning that the physical mannequin was always located at
position coordinates pv = (1.5,−1.4, 0.0) and orientation ψv = −45◦ from the world coordinate frame.

(a) (b)

(c)

Figure 9. Tested case studies of search and rescue situational awareness regarding the victim location.
Orange splines represent the path of the UAV; green blocks are the environment obstacles; the orange
point-cloud is the UAV position belief; the red point-cloud is the victim position belief; and the purple
rectangle the camera’s Field of View (FOV). (a) Victim position points distributed in a single cluster.
(b) Victim position points distributed in two clusters. (c) Cluster of victim position points uniformly
distributed along the flying area.

5.2.3. TAPIR Hyper-Parameters

TAPIR requires tuning several hyper-parameters to obtain the best possible approximation of the
POMDP solution (i.e., optimal motion policy). For these experiments, the offline policy timeout is set
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to five (5) seconds, the maximum belief tree depth is of 100 nodes, time steps are of one (1) second,
and the discount factor γ = 0.99. The UAV is conditioned to find the victim for a maximum of 480
iterations (equivalent to approx. eight minutes of flight time). The minimum and maximum flying
altitudes of the UAV are of 1.0 m and 1.8 m respectively. Specific values for the POMDP variables
defined in Section 2.1 are shown in Table 2,

Table 2. Hyperparameter values for the Partially Observable Markov Decision Process (POMDP)
formulated problem. The initial belief position and orientation values were defined in reference to the
world coordinate frame.

Category Variable Value Category Variable Value

Actions δ 0.25 States ζthres 0.7

Rewards

raction −2.5

Initial belief (b0)

µpu (−1.8, 1.8, 1.5) m
rcrash −25 σpu 1.0 m
rout −10 µ1pv

(1.5,−1.4, 0.0) m
ρ 25 µ2pv

(−0.9, 0.2, 0.0) m
rζ 75 σpv 1.5 m

r f ov −5 ψv −45◦

Observations g 0.2 m

where δ is the magnitude of change of UAV position coordinates between time steps (i.e., ∆t(k) = 1 s,
∴ ṗu ≈ 0.25 m/s) for the x, y and z Cartesian axes; the set of r∗ variables constitute the system rewards
defined in Section 4.4.4; ζthres is the minimum victim detection confidence that should be achieved by
the UAV; the set of variables defined in the initial belief defined in Section 5.2.2; and g is the distance
gap applied to the minimum UAV altitude defined in Section 4.4.5; The assigned values for the system
rewards are found after performing grid-search into the ABT solver.

6. Results

A set of success metrics were evaluated for each one of the three situational awareness case studies
regarding the covered area(s) where the victim was believed to be located: victim position points
distributed in single, dual and uniform clusters (as discussed in Section 5.2.2). The metrics consisted
on the victim confirmation rate (i.e., fconf = true), the victim miss rate (i.e., fdtc = false), the UAV
collision rate (i.e., fcrash = true), the UAV navigation rate flying beyond the area limits (i.e., froi = true),
the occurrences where the aircraft followed a sub-optimal path, and the timeout rate (i.e., k > 480 steps,
or t ≥ 480 s). A summary of the collected metrics is shown in Table 3:

Table 3. Performance metrics for Hardware in the Loop (HIL) simulations (S) and real flight tests (FT),
where x̄W is the weighted average of the measured variables.

Belief Cluster Iterations Detections (%) Misses (%) Sub-Optimal Path (%) Timeout (%)

Single (S) 50 100.0 0.0 0.0 0.0
Single (FT) 7 85.7 14.3 0.0 0.0

Dual (S) 44 100.0 0.0 0.0 0.0
Dual (FT) 7 71.4 14.3 14.3 0.0

Uniform (S) 50 92.0 0.0 6.0 2.0
Uniform (FT) 9 88.9 0.0 0.0 11.1

x̄W(S) 144 97.2 0.0 2.1 0.7
x̄W(FT) 23 82.6 8.7 4.4 4.3

Where “Detections” measures the instances where the victim was detected with ζ ≥ 0.7.
Otherwise, failed instances were either classified as “Misses” if ζ < 0.7, “Sub-optimal Path” if the UAV
got stuck in a patch that does not cover the victim’s location, or “Timeout” if the UAV consumed all
the flying time (k > 480) without detecting the victim.
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Overall, the presented system achieved a victim confirmation rate for all the cluster belief
configurations of 97.2% in simulation and 82.6% in flight tests. For experiments with single clusters,
a slight difference in the detection confidence was found between simulation and flight tests.
An increase on the setup complexity by the victim silhouette, scene and camera conditions was
attributed to lower victim detection confidence values during real flight tests. Namely, the imperfect
anthropomorphic properties of the mannequin compared to its simulation counterpart and lower
image quality from the RGB camera, represented a cost in the performance of the computer vision
module to detect a person. A similar finding was discovered in tests with dual but not with uniform
declared clusters. This behaviour could be attributed to the bigger search space required to find
the victim using uniform clusters than with the former. In addition, the UAV was unable to detect
a victim in 14.3% of the flight tests with dual cluster declarations because of a sub-optimal UAV
trajectory. This behaviour was also present but less frequent in 6.0% of HIL simulation experiments
under uniform cluster declaration. A few timeout stopping conditions were also triggered in missions
with uniform clusters because the UAV kept navigating in unexplored areas after flying above and not
detecting the mannequin. Lastly, none of the experiments triggered terminal states caused by collisions
or UAV trajectories violating the flying area limits.

The most frequent trajectories generated by the UAV in experiments with single clusters are
displayed in Figure 10. A set of arrows drawn on top of the UAV path represent the actions taken at
every time step to clarify the influence of the decision-making module over the behaviour and stability
of the aircraft during the missions.

(a) (b)

Figure 10. Flight mission examples of most frequent types of UAV trajectories under a single belief
cluster. Orange splines represent the path of the UAV; the blue arrows are action commands per time
step; green blocks are the environment obstacles; the orange point-cloud is the UAV position belief;
the red point-cloud is the victim position belief; and the purple rectangle the camera’s Field of View
(FOV). (a) UAV motion policy which crosses two of the column-shaped obstacles. (b) UAV motion
policy which avoids crossing two of the column-shaped obstacles.

Simulation and flight tests with dual clusters evidenced just one type of generated trajectory as
opposed to the first case study, as shown in Figure 11. Positioning one of the clusters between two
of the environment obstacles caused the UAV to explore such area patch first (owing to be at a closer
distance than the cluster at the top). As expected, the UAV followed the same navigation route once it
cleared the first cluster as this strategy requires less time steps than alternative routes.
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(a) (b)

Figure 11. Flight mission example trajectory under two defined belief clusters. (a) UAV motion policy
status when it reached the first cluster. (b) UAV motion policy after clearing the first cluster and
reaching the second cluster.

The behaviour of the UAV with uniform clusters slightly differed compared to other case studies.
Even though the UAV executed motion policies following similar global trajectories as with the first
discussed case study (crossing and avoiding obstacles), a zigzag pattern was visualised as illustrated
in Figure 12.

(a) (b)

Figure 12. Example global trajectories followed by the UAV under a uniform belief cluster in flight
tests. (a) Motion policy that encourages the UAV to cross over the column obstacles. (b) Motion policy
that encourages the UAV that avoids crossing over the column obstacles.

For real flight tests where the victim was not detected, the traversed path by the UAV followed a
pattern to cover remaining unexplored areas until it reached its maximum endurance, as shown in
Figure 13.



62 Chapter 4. UAV Framework for Autonomous Navigation in Cluttered Indoor Environments 

Remote Sens. 2020, 12, 3386 21 of 31

(a) (b)

(c) (d)

(e) (f)

Figure 13. Example traversed path in a real flight test if a victim is undetected under a uniform belief
cluster. (a) Traversed path at time step k = 30; (b) k = 55; (c) k = 75; (d) k = 105; (e) k = 150;
(f) k = 165.

During the data collection process through real flight tests, the UAV experienced small stability
problems in some runs, as seen in Figure 14. The issues altered the smoothness of the UAV trajectory
but did not cause any consequence for the mission goal of finding the victim.
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(a)

(b)

Figure 14. Stability anomalies on the traced UAV trajectory during real flight tests. (a) Noisy UAV
trajectory in a mission with single belief cluster. (b) Noisy UAV trajectory in a mission with dual
belief cluster.

Each one of the displayed arrows illustrate the action commands from the decision-making
module at every time step. The arrows indicate how the UAV was still capable of following a
consistent motion policy despite the added uncertainty by the aggressive motion response of the UAV.
An analysis of recorded flight logs suggests that these perturbations in the UAV motion were caused
by a sub-optimal performance of the FCU position controller. Specifically, the constant mounting and
dismounting of the UAV LiPo battery during real flight tests provoked unintentional balancing issues,
which may have altered the transition function of the UAV from which the flight controller was tuned
by default. A graphical comparison of the UAV position response between two sets of flights is shown
in Figures A1 and A2. The results suggest, however, that the system is robust enough to account for
uncertainties caused by position estimation errors from the UAV motion module and still accomplish
the flight mission.

An analysis of executed time steps to find the victim with a detection confidence ζ ≥ 0.7 was also
conducted to assess the performance of the system by analysing repeatability in the measurements
and gaps between HIL simulations and real flight tests. Box plots summarising the nature of collected
data are shown in Figure 15.

Experiments defined with a single belief cluster (Figure 15a) presented a median of 32 and 31
time steps in simulation and flight tests respectively. Tests with dual (Figure 15b) and uniform belief
clusters (Figure 15c) reported a higher variance with median values of 46.5 and 29 time steps, and 99.5
and 59.5 time steps respectively. The variance in the length of the whiskers between simulation and
flight tests in all the case studies was caused by the equations that define the UAV motion in Gazebo.
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Those functions approximate by default the motion response of a generic multi-rotor UAV rather than
the Holybro S500 frame utilised for this research.
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Figure 15. Data distribution of executed time steps by the POMDP solver until the victim was detected
with a confidence ζ ≥ 0.7 and position coordinate pv = (1.5,−1.4, 0.0). HIL simulations (S) are
indicated in blue and real flight tests (FT) in red. (a) Results under a single victim belief cluster.
(b) Results under two victim belief clusters. (c) Results under a uniform belief cluster.

Bigger top whiskers and several outliers were also present in the distribution of collected data.
These abnormal time step values and data asymmetry occurred as part of the proposed problem
formulation, where victim belief particles are repopulated in the flying area only if the UAV finishes
exploring the area of interest and is unable to find any victims. As a result, the UAV was prompted to
further explore again and iterate around the cluster area. Additional time steps were also registered in
situations where the UAV was able to detect a victim but with a confidence rate below the defined
threshold value. In these situations, the UAV was encouraged to take additional actions in order
to increase the confidence rate and confirm a detection. Some examples of recorded simulation test
outliers are shown in Figure 16.

(a) (b)

Figure 16. Cont.
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(c)

Figure 16. Anomalies on the amount of executed time steps in simulation. (a) Example trajectory with
repopulated single cluster. (b) Example trajectory for an initially defined dual cluster, repopulated after
low detection confidence values. (c) Example abnormal trajectory under a uniform cluster.

7. Discussion

The proposed system architecture represents a competitive approach in the domain of onboard
UAV decision-making under environment uncertainty and partial observability in GNSS-denied
environments. This research extends the contributions of Vanegas and Gonzalez [24] by running the
computer vision and decision-making modules onboard the UAV companion computer instead of using
an external workstation and having a strong dependency from communication modules to transfer and
process the data. Furthermore, the complexity for the target detection task was increased by detecting
an adult mannequin instead of predefined augmented vision markers. Similarly, results obtained
by Sandino et al. [40] are further enhanced by: (1) offering a more robust simulation environment
(PX4 flight controller and onboard computer in HIL) and a more comprehensive system evaluation
illustrating results in both simulation and hardware and; (2) extending the problem formulation
by incorporating detection errors from the computer vision module (through the modelling of the
detection confidence oζ in the problem formulation, covered in Section 4.4.5), rather than assuming
detections with null instances of false positives. Obtained results also suggest that the traced trajectories
by the UAV became smoother after including a concept of memory by recording previously explored
areas from the flying area and adding the reward rfov (defined in Section 4.4.4) in the reward function.

Overall, this study presents a flexible framework that provides scalability through portability
depending on the flight mission goals, provided sensors and run algorithms for vision and
decision-making. The mathematical formulation of the problem as a model-based POMDP brings
enough flexibility to expand the functionality of the system with other multi-rotor UAVs of variable size
as long as the dynamic model of the aerial platform and the environment are available to the researchers.
The problem formulation covered in Section 4.4 is not specific to the scope of the experimental design
of this paper and can be expanded to bigger surveying areas with more complex occupancy map
representations. In fact, the UAV motion and flying boundaries of the UAV and victim can be increased
without impacting the performance of the ABT solver, Octomap and TAPIR toolkits.

Despite the progress discussed in this paper, there are still several challenges which need to
be addressed in the future. First, the occupancy map was provided before flying the aircraft and
it was not updated mid-flight. Even though it is possible to reconstruct occupancy maps by using,
for example, existing building floor plans of the surveyed area, it might not be suitable to fly in
more complex environments with dynamic obstacles. Additionally, not updating the occupancy map
online constitutes a strong dependency on the local position estimation system (i.e., visual odometry
sensor). Indeed, the risk of the UAV colliding with other obstacles increases if position estimation
errors are high. Augmenting the proportion of the obstacles was an applied workaround during
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the data collection process. Under the assumption of operating with preloaded occupancy maps,
the system complexity was simplified by not including UAV actions such changes in its heading
direction. However, it is possible to either incorporate heading actions in the problem formulation
and disregard the backward, left and right action commands, or include additional sensors which
can provide enough sensing coverage around the UAV in future experiments. The use of one or
many depth cameras or a LiDAR sensor to update the occupancy map mid-flight might diminish the
likelihood of collisions, regardless of the error magnitude of the local position estimation algorithm.
Second, the off-the-shelf model to detect persons might not produce the expected performance at more
complex experiment setups. For instance, detections are likely to be poor when the person is visualised
in conditions from which the detector was not trained for such as debris occluding the person and if
the person is observed from other camera perspectives as the one shown in Figure 3b.

Previous research also indicates the convenience of using sensors to detect bio-signals from
humans, such as microphones for audio signals, thermal cameras, gas sensors and Doppler radars
for breathing and heart-beating signals respectively [54–56]. Bio-signals have also been proven to be
detected through the use of computer vision and RGB cameras as long as UAVs are positioned closed
enough to the victims [15]. Even though the employed MobileNet SSD detector is efficient enough
to distinguish the presence of persons regardless of their health conditions, the modularity design
presented in the system architecture allows adding other vision-based detectors without substantial
modifications, so that they could provide further valuable data to the decision-making module (in the
form of observations), UAV operators and SAR squads. Additional sensors such as thermal and depth
cameras can also be added to the UAV frame without altering the workflow of the system architecture.
Moreover, other decision-making algorithms could also be ported to the framework with ease, such as
model-free reinforcement learning, Observe–Orient–Decide–Act (OODA) loops, Bayesian networks,
etc. Nevertheless, a comparison study between the trade-offs of other decision-making algorithms
for UAV navigation under environment uncertainty should be reviewed in future research before
adapting them to the framework.

A successful implementation of the proposed system in real disaster events requires the
examination of various practical challenges, which include but are not limited to:

• The size of UAV, which may restrict the survey in very confined places and compromise the
integrity of the UAV and nearby victims, if any.

• Low lighting conditions, which might decrease the performance of the visual odometry system
and people/object detector.

• The UAV endurance, which could constrain SAR operations if the remote assessment of a
hazardous structure exceeds 20 min of flying time.

• Collisions, which may occur owing to the absence of propeller protectors or if victims make
accidental contact with the UAV.

• Chemical and electrical hazards present in the surveyed area, which may compromise electronic
circuits and sensors.

• Mishandling of LiPo batteries, which might provoke fire hazards if not isolated from impacts and
ignition sources.

An additional extension to the UAV frame could be the incorporation of a front-view camera,
which will aid the assessment and SAR logistics if physical intervention to the surveyed structure
is necessary.

8. Conclusions and Future Work

This paper presented a framework for automated UAV motion planning under target location
uncertainty in cluttered, GNSS-denied environments. The system architecture details the functionality
of system modules for unsupervised decision making onboard resource-constrained hardware
platforms such as small UAVs (MTOW ≤ 13.5 kg). The proposed approach is illustrated in the
SAR context by locating a victim in a simulated office building. The system is validated using HIL
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simulations to ensure a high-fidelity setup against real-world conditions; and real flight tests using a
multi-rotor UAV frame and vision-based sensors for SLAM and collection of system observations.

The problem is mathematically formulated as a POMDP, whose probabilistic model allows
representing uncertainty with probability distributions. This approach allows defining potential
locations of the victim with normal and uniform probabilistic distributions (and, thus, model victim
location uncertainty). The performance of the UAV was evaluated under three case studies of
situational awareness; a single cluster of victim coordinates covering a small patch from the surveyed
environment; two clusters of victim coordinates covering two areas of interest; and a cluster of victim
coordinates uniformly distributed across the flying area. Incorporating the ABT algorithm as the
POMDP solver does not only provide the system with a UAV motion policy in seconds prior to any
flight mission, but it also improves previously computed policies mid-flight by modelling potential
changes in the environment and levels of uncertainty based on possible future actions in its internal
search tree. This feature allows the UAV to optimise its behaviour in various scenarios such as
preserving a constant path under unstable UAV motion response or holding its position while more
episodes and internal simulations are generated to execute a better policy. Ultimately, the system
ensures rapid monitoring and personal safety by letting the UAV to explore the area without UAV
operator intervention.

The primary contributions of this paper are:

1. A UAV framework for autonomous navigation under target detection uncertainty.
The computer vision and decision-making modules run onboard resource-constrained hardware
(i.e., a companion computer mounted to the UAV), discarding the dependency of the UAV from
third-party systems to perform its motion policy calculations. The framework offers enough
flexibility to expand or adapt the functionality of the system by using other vision or light-based
sensors, UAV frames and onboard computing hardware.

2. An approach to handle target detection uncertainty from false positive detection instances through
the concept of detection confidence and the definition of a confirmed detection in the POMDP
problem formulation.

3. A detailed case study of the implementation of the system modules for a simulated land
SAR mission in GNSS-denied environments, which allows integrating the flight controller and
companion computer under HIL simulations to bridge the gap between simulations and real
flight tests.

A recorded system demonstration can be observed using the following link: https://youtu.be/
fEWVd-GC7Fs.

Future avenues for research include evaluation of the performance of the system with an unknown
environment map, dynamic obstacles and the robustness of the POMDP solver under environment
changes by updating the occupancy map mid-flight. An additional system performance analysis by
locating the victim at various locations and finding multiple victims might help to understand the
limits of the proposed framework. A study comparing the performance between the ABT solver and
other model-based POMDP solvers, and other decision-making algorithms should also be conducted.
Evaluating the performance of the UAV using an object detector tuned with a domain-specific dataset
(i.e., footage of people in distress and at various occlusion levels) will aid the understanding of the
UAV capacity to detect victims under more challenging scenarios. Incorporating widely used sensors
for land SAR such as thermal cameras as well as processing camera frames at variable gimbal angle
configurations is expected to be conducted in future system implementations.
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Abbreviations

The following abbreviations are used in this manuscript:

2D Two-dimensional
3D Three-dimensional
ABT Augmented Belief Trees
D-CNN Deep Convolutional Neural Network
FCU Flight Controller Unit
FOV Field of View
FPS Frames per Second
GNSS Global Navigation Satellite System
HIL Hardware in the Loop
LiDAR Light Detection and Ranging
MDP Markov Decision Process
MTOW Maximum Take-off Weight
OS Operating System
POMCP Partially Observable Monte Carlo Planning
POMDP Partially Observable Markov Decision Process
RGB Red, Green, Blue
ROI Region of Interest
ROS Robot Operating System
SAR Search and Rescue
SIL Software in the Loop
SLAM Simultaneous Localisation and Mapping
SSD Single Shot Detector
TAPIR Toolkit for approximating and Adapting POMDP solutions In Real time
UAV Unmanned Aerial Vehicle
VPU Vision Processing Unit

Appendix A

Figures A1 and A2 show an example UAV position response comparison between a smooth and a
noisy traversed path.
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Figure A1. UAV position response for a smooth traversed path for (a) x and (b) y axes.
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Figure A2. UAV position response for a noisy traversed path for (a) x and (b) y axes.
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Uncertainty 

RECENT advances in UAV autonomy have lead to their gradual use in remote sensing applications 

such as precision agriculture, biosecurity, disaster monitoring and surveillance. This chapter 

presents the third paper published from this research, a modular UAV system design for autonomous 

navigation and object fnding in outdoor environments under partial observability and object detec-

tion uncertainty, and capable of operating in small UAVs with resource-constrained hardware. The 

POMDP problem formulation presented in Chapter 4 is extended here to have a more advanced 

reward function that determines the behaviour of the UAV for exploration, obstacle avoidance, and 

inspection of areas with potential presence of objects. The novel fight mode (hybrid mode) combines 

the waypoint navigation of UAVs in outdoor environments, and the autonomy of inspecting delimited 

regions using offboard mode. This paper presents an approach that successfully replicates real-world 

environments in the Gazebo robotics simulator by fusing collected data of a real scenario from air-

borne UAV geo-referenced RGB mosaic rasters, and LiDAR point clouds to produce 3D occupancy 

maps of the virtual environment. Experimental insights from an emulated SAR scenario revealed that 

increased cognitive power added by the proposed motion planner and fight modes enabled UAVs 

to collect more accurate victim coordinates compared to the baseline planner. The boosted capabi-

lity of navigating autonomously and diminishing false positive readings from CNN object detectors 

improves the robustness of small UAVs in time-critical applications such as SAR. 
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Abstract: Recent advances in autonomy of unmanned aerial vehicles (UAVs) have increased their
use in remote sensing applications, such as precision agriculture, biosecurity, disaster monitoring,
and surveillance. However, onboard UAV cognition capabilities for understanding and interacting in
environments with imprecise or partial observations, for objects of interest within complex scenes, are
limited, and have not yet been fully investigated. This limitation of onboard decision-making under
uncertainty has delegated the motion planning strategy in complex environments to human pilots,
which rely on communication subsystems and real-time telemetry from ground control stations. This
paper presents a UAV-based autonomous motion planning and object finding system under uncer-
tainty and partial observability in outdoor environments. The proposed system architecture follows
a modular design, which allocates most of the computationally intensive tasks to a companion com-
puter onboard the UAV to achieve high-fidelity results in simulated environments. We demonstrate
the system with a search and rescue (SAR) case study, where a lost person (victim) in bushland needs
to be found using a sub-2 kg quadrotor UAV. The navigation problem is mathematically formulated
as a partially observable Markov decision process (POMDP). A motion strategy (or policy) is obtained
once a POMDP is solved mid-flight and in real time using augmented belief trees (ABT) and the
TAPIR toolkit. The system’s performance was assessed using three flight modes: (1) mission mode,
which follows a survey plan and used here as the baseline motion planner; (2) offboard mode, which
runs the POMDP-based planner across the flying area; and (3) hybrid mode, which combines mission
and offboard modes for improved coverage in outdoor scenarios. Results suggest the increased
cognitive power added by the proposed motion planner and flight modes allow UAVs to collect more
accurate victim coordinates compared to the baseline planner. Adding the proposed system to UAVs
results in improved robustness against potential false positive readings of detected objects caused by
data noise, inaccurate detections, and elevated complexity to navigate in time-critical applications,
such as SAR.

Keywords: unmanned aerial system (UAS); unmanned aerial vehicle (UAV); artificial intelligence
(AI); embedded systems; machine learning (ML); search and rescue (SAR); computer vision (CV);
sequential decision-making; robotics; partially observable Markov decision process (POMDP)

1. Introduction

The elevated number of stranded people and human loss caused by natural disasters,
weather events, crime, and military conflicts is an ever-present issue [1]. According to the
Australian Institute of Criminology, an average of 38,000 people are reported missing per
year in Australia [2]. Unfortunately, around 2% of them (or 720 persons) are never found,
and 2600 are reported (long-term) missing for more than three months. Thus, it is beneficial
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to improve search and rescue (SAR) efforts by developing technology that cooperates with
first responders to locate as many victims as soon as an emergency situation is declared.

Recent advances in autonomy of unmanned aerial vehicles (UAVs)—or drones—
have increased their adoption in time-critical applications, such as disaster monitoring,
surveillance, and SAR [3–6]. Compared to manned aircraft, UAVs offer high versatility to
scout areas due to their reduced size and cost, extensive payload adaptability, and ease
of piloting by incorporating automated tasks, including waypoint navigation, obstacle
avoidance, and autonomous take-off and landing [7–9]. In time-critical applications, such
as SAR, real-time camera streaming is critical for UAV operators to understand the situation
context and manoeuvre the aircraft during the mission [10]. However, this strong reliance
in the communication system compromises the usability of UAVs if such systems fail [11].
Furthermore, operators are susceptible to fatigue in the long run by controlling the UAV
and photo-interpreting streamed camera frames to find victims [12]. As a result, developing
decision-making algorithms onboard UAVs could further expand their applicability in
civilian and time-critical applications. UAVs enriched with autonomous onboard object
detection for real-time decision making eliminate the dependency of UAV pilots to photo-
interpret streamed frames, and in their communication systems to control the aircraft.

Real-world and time-critical UAV applications are full of uncertainties. As shown in
Figure 1, uncertainty comes from uncontrolled external factors, such as unknown environ-
ment conditions, strong wind gusts, dynamic obstacles, suboptimal survey altitude, and
partial observability. Research has demonstrated that applied theory on decision making
using partially observable Markov decision processes (POMDPs) can increase cognition
capabilities in UAVs for autonomous path planning under uncertainty [13–15]. UAV frame-
works for real-time target finding and tracking in cluttered indoor environments under
uncertainty [16,17] have been developed by using augmented belief trees (ABT) [18], an
online POMDP solver that computes and updates motion policies in real time. Similarly,
POMDPs have also been used to solve multi-objective UAV tasks, such as collision avoid-
ance, path planning, and multiple target tracking [19,20]. In the SAR domain, autonomous
navigation in humanitarian relief operations have also been tested using POMDPs, with
most of the implementations achieving experimental results only in simulation [21,22]. A
recent research work towards real-world tests shows a UAV motion planner implementa-
tion using the SARSOP POMDP solver [23] onboard a small UAV (UAVs with a maximum
take-off weight (MTOW) of 13.5 kg [24]). However, the system was only validated using
trivial targets and not with humanoid-shaped mannequins [25].

Uncertainty in time-critical UAV operations is not limited to external factors. Inter-
nal UAV systems, which also generate uncertainty include noisy camera frames during
streaming, low image resolution, suboptimal camera settings, and inaccurate detection
outputs from vision-based object detectors. Research works on onboard decision-making
in small UAVs for autonomous navigation under object detection uncertainty from Con-
volutional Neural Network (CNN) models are scarce. Some of the closest approaches are
the studies from Sandino et al. [26,27], which describe a framework and POMDP problem
formulation for a SAR application in a global navigation satellite system (GNSS)-denied
environment using a sub-2 kg UAV. The framework was tested in simulation and with
real flight tests indoors, simulating a collapsed building scenario. Another study pre-
sented by Chanel et al. [28] shows an autonomous multiple-car detector using a UAV and
a POMDP optimised mid-flight. However, there are limitations with reproducibility; rele-
vant experimental details are not disclosed, such as the UAV frame, companion computer,
payload, and computer vision algorithms.

This paper presents an autonomous drone motion planning and object finding system
under object detection uncertainty for outdoor environments. The UAV exploration and
object inspection tasks are mathematically formulated using a POMDP, which models
uncertainty with probabilistic distributions. A case study inspired by SAR is illustrated
below, where a small UAV is deployed to locate a missing person (victim) in a bushland
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region. Two victim locations across a simulated flight area were evaluated to test the system
at various levels of occlusion.

Figure 1. Factors that can cause object detection uncertainty and partial observability during UAV
surveys. Incorporating algorithms in decision-making under uncertainty onboard UAVs increase
their reliability to explore complex and time-critical environments, such as search and rescue.

This work evaluates the performance of the proposed motion planner by operating
the UAV with the following flight modes: (1) mission mode (baseline motion planner),
which uses a traditional survey flight plan to explore the area of interest; (2) offboard
mode, where the POMDP-based motion planner fully controls the behaviour of the UAV
for exploration and inspection of areas from detections of potential victims; and (3) hybrid
mode, which uses mission mode to explore the area of interest and triggers offboard mode
to inspect dedicated regions from past detections of potential victims. The proposed UAV
system design uses hardware in the loop (HIL) to integrate a physical companion computer
into the simulation environment. By using HIL to run the decision-making and vision
algorithms, it is possible to obtain performance results comparable with those obtained
with real flight tests.

2. System Architecture

The system architecture uses a modular design that allocates tasks to dedicated nodes,
as shown in Figure 2. This architecture design allows users to collect experimental data in
simulated environments to be as close as possible to data collected on real-world tests.

The proposed system architecture categorises its modules into two primary categories,
namely the simulator and the companion computer (operating under HIL). The simulator
is comprised by items within in the simulated environment including models of the UAV
body frame, payloads (i.e., cameras), the victim and relevant obstacles. In addition, the
simulator contains plugins to add the UAV’s autopilot in the software in the Loop (SIL)
mode, and relevant peripheral sensors. The readings of these simulated sensors are used
by the autopilot to run its local position estimator based on an extended Kalman filter
(EKF). The second category contains the system modules that can be run onboard a UAV’s
companion computer using HIL, namely, the Computer vision module, decision-making
module, mapping module, and motion module. Specific implementations to enable SIL
and HIL are covered in detail in Section 4.
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Figure 2. System architecture for applications with rich global navigation satellite system (GNSS)
coverage. The environment, UAV, payloads, victim, and obstacles are emulated in a simulator. The
computer vision, decision-making, mapping, and motion modules run in hardware in the loop (HIL)
using a companion computer.

Each sequential decision process starts by capturing observations of the environment,
calculating an action using the motion planner, and then the UAV applying the action. The
entire sequence is monitored via telemetry using the ground control station, enabling the
operator switch between the autonomous motion planner and manual control if required.
Beginning the sequence, environment observations are collected using streamed camera
frames, and processed in the computer vision module. This module detects people and their
location inside the camera frames with a CNN. As CNNs require mathematical operations,
which are computationally expensive in embedded hardware, system resources allocated
to run CNN models are delegated to the vision processing unit (VPU). Any positive victim
detection outputs are ultimately sent to the decision-making module and managed using
the observation server.

The decision-making module is primarily constituted by the POMDP motion planner
and the observation server. The observation server handles any data traffic requested
by the motion planner, such as local position estimations by the autopilot, any positive
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detections by the computer vision module, and 3D occupancy maps by the mapping
module. This map is constituted by volumetric occupancy grids and displays the presence
and localisation of obstacles in the surveyed environment. In this implementation, the 3D
occupancy map is used by the decision-making and motion modules for obstacle avoidance
and collision prevention, respectively.

The motion planner features a POMDP to mathematically formulate the sequential
decision-making problem. The POMDP-based motion planner outputs action commands
to the motion module, which will subsequently translate and send these commands to the
flight controller. Lastly, the flight controller adjusts the control signals to the UAV motors
to reflect the requested action from the motion planner, and an idle period is granted to the
system while the UAV moves to the next location.

3. Motion Planner Design

A decision-making problem for autonomous navigation in UAVs can be formulated
as the sequence of actions A that the UAV (or agent) needs to take to accomplish a mission
goal. This set of actions are limited to the operational abilities of the UAV within the
environment. States S are defined as the set of parameters that outline the system. Every
action taken by the UAV causes a change of state s′ ∈ S in the time domain. An illustration
of the interaction between the agent and the environment is depicted in Figure 3.

Agent (i.e., UAV)

Environment

action
at

state
st

st+1

policy
πt

reward
rt

Figure 3. Interaction between the UAV (or agent) and the environment under the framework of
Markov decision processes (MDPs).

Each change of state (or action–state chain) is quantified with a reward r. By giving
numerical values to every action–state chain, the behaviour of the UAV can be influenced by
seeking the highest possible reward when specific desired states are reached (e.g., locating a
victim without colliding with nearby obstacles). Simultaneously, action–state combinations
that lead to undesirable future states (e.g., colliding with nearby obstacles, or flying beyond
the survey geofence) could be quantified with a penalty (or negative reward). Therefore,
these problems can be solved by finding the optimal sequential set of actions that a UAV
should take to obtain the highest possible accumulated reward as quick as possible [29].

Data received by UAV of the environment (or observations) from its sensors and
processed vision outputs (i.e., CNN model detections) in real-world applications are,
unfortunately, noisy, incomplete or inaccurate. These imperfections restrict the inference of
actual system states, which have inspired the mathematical formulation of POMDPs [30].

This work uses a POMDP to compute a motion policy, which outputs low-level
action commands derived using environment observations. A POMDP [31] is a tuple
〈A, S, O, T,Z , R, b0, γ〉, where A is a finite set of UAV actions, S is a finite set of states, and
O is a finite set of observations. Each time the UAV takes an action a ∈ A from a state
s ∈ S, the probability of moving to a new state s′ ∈ S is defined by a transition function
T(s, a, s′) = P(s′ | s, a). After an action is taken, the UAV receives an observation o ∈ O
followed by an observation function Z(s′, a, o) = P(o | s′, a). Lastly, the model quantifies
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every decision chain (or action taken a ∈ A from state s ∈ S) with a reward r, calculated
using the reward function R(a, s).

In real-world applications, UAVs are limited to capture partial information about the
surveyed environment (and the objects to be detected). A POMDP models the uncertainty
given by partial observability of its observed states using a probability distribution over
the system states. This modelling is known as the belief b, defined as follows:

b(H) = P(s1 | H), · · · ,P(sn | H) (1)

H = a0, o1, r1, · · · , at−1, ot, rt (2)

where H is the history of actions, observations, and rewards the UAV has experienced until
a time step t.

A POMDP solver starts planning from an initial belief b0, which is usually generated
using the initial conditions (and assumptions) of the flight mission. When an observation
is made, the belief distribution is subsequently updated. The motion policy π of the UAV
is represented by mapping belief states to actions π : b→ A. An illustration of a belief tree
and motion policy in POMDPs is shown in Figure 4.

Figure 4. Belief tree and motion policy representation in partially observable MDPs (POMDPs). Each
circle illustrates the system belief as the probability distribution over the system states (red dots).
When an observation is made, the belief distribution is subsequently updated.

The solution of a POMDP is obtained after finding the optimal policy π∗, which is
defined as follows:

π∗ := arg max
π

(
E
[

∞

∑
t=0

γtR(St, π(bt))

])
, (3)

where γ ∈ [0, 1] is the discount factor and defines the relative importance of immediate
rewards compared to future rewards.

The solver selected in this work uses augmented belief trees (ABT) [18], which reduce
computational demands by reusing past computed policies and updating the optimal
policy if changes to the POMDP model are detected. Furthermore, formulated problems
with ABT allow declaring continuous values for actions, states, and observations. The
following subsections detail the problem assumptions, and the components of the POMDP
tuple for exploration and object detection applied on multi-rotor UAVs.

3.1. Assumptions

The following assumptions are applied to the problem formulation for exploration
and object detection (i.e., victims) using multi-rotor UAVs:
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• An initial 3D occupancy map of the environment is pre-loaded to the UAV before
taking-off (further details on how the map is generated can be found in Section 4.4).

• Observations come from real-time streaming of processed camera frames (from the
computer vision module), the 3D occupancy map, and the estimated local UAV
position from the autopilot.

• The problem formulation is constrained to detect only a single, static victim. However,
multiple victims located in the search area could be detected if the motion planner is
launched multiple times (see Section 4.5 for further details).

• The motion planner starts once the UAV reaches the initial position waypoint of the
flight survey.

• The planner concludes computing motion policies when either: (1) the UAV detects
a victim with a high confidence value that exceeds a given threshold (covered in
Section 3.7); (2) the UAV covers the entire exploration extent of the search area without
finding any victims; or (3) the UAV exceeds a maximum flight timeout.

3.2. Action Commands

This implementation proposes seven low-level UAV actions, which produce position
changes in at least one of axes of the world coordinate frame as shown in Table 1. This
design allows adding more actions if the application requires it. Possible scenarios include
actions to set pitch and roll angles of a camera gimbal, the heading of the UAV (yaw) and
actions applied to more than one Cartesian axis (e.g., up and forward, forward and right,
etc). Other UAV actions that are executed out of the scope of the POMDP motion planner,
such as take-off, return to launch, and land are instead managed by the autopilot.

Table 1. Set of action commands comprised of local position commands referenced to the world
coordinate frame. The system keeps records of its current local position at time step k, and calculates
δ as the change of position magnitude of coordinates xu, yu and zu from time step k to time step k + 1.

a(k) ∈ A xu(k + 1) yu(k + 1) zu(k + 1)

Forward xu(k) + δx yu(k) zu(k)
Backward xu(k)− δx yu(k) zu(k)

Left xu(k) yu(k) + δy zu(k)
Right xu(k) yu(k)− δy zu(k)

Up xu(k) yu(k) zu(k) + δz
Down xu(k) yu(k) zu(k)− δz
Hover xu(k) yu(k) zu(k)

Each time the UAV takes an action, a change δ in UAV local position coordinates is
applied. The magnitude for δx and δy is variable, and its value is defined by the desired
overlap of collected camera frames between time steps, as shown below:

δ = lFOV(1− λ) (4)

where lFOV is the length of the projected camera’s field of view (FOV), and λ ∈ [0, 1)
is the desired overlap value. High values of λ result in smoother motion response and
conservative detection of victims in the scene, whereas low values lead to more aggressive
UAV response. A detailed description of FOV estimations from vision-based sensors can
be found in Section 3.7.

3.3. States

In POMDP formulation for autonomous UAV path-planning, the defined states serve
two goals: (1) to model the motion dynamics of the UAV; and (2) to oversee key system
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conditions during the flight mission. A system state s ∈ S for autonomous UAV exploration
and object detection is defined as:

s = (pu, fcrash, froi, fdct, pv, cv) (5)

where pu is the position of the UAV in the world coordinate frame, fcrash is a flag raised
when the UAV crashes with an obstacle, froi is a flag indicating whether the UAV flying
beyond the flying limits, fdct is the flag raised if a potential victim is detected by the UAV.
If fdct = True, the position of the victim in the world coordinate frame is given in pv,
with cv ∈ [0, 1] providing the corresponding detection confidence. The system reaches a
terminal state whenever cv ≥ ζ, where ζ is the confidence threshold. The formulated state
space is flexible and can be further extended for two or more victims, as well as additional
system conditions if required.

3.4. UAV Motion Model

The transition from current to new states is defined through a simplified version of
the motion dynamics of a multi-rotor UAV as follows:

pu(k + 1) = pu(k) + ∆pu(k) (6)

where pu(k) is the position of the UAV at time step k, and ∆pu(k) is the change in the
UAV’s position from time step k to time step k + 1. While this implementation does not
incorporate the UAV Euler yaw angles in the action space, Equation (6) can be further
expanded by including the multi-rotor rotation matrix [32] as presented in the problem
formulation given in [26].

The procedure to model ∆pu(k) follows the system identification process presented
in [27]. The primary workflow is defined as follows:

1. Track the position responses of the UAV controlled system using a series of step
setpoints via a Vicon motion capture system (Vicon, Oxford, UK).

2. Estimate the transfer function of the UAV controlled system using the MATLAB
system identification toolbox.

3. Discretise the transfer function using the Tustin approximation method.
4. Obtain the difference equation using the inverse Z transform.

The generic difference equation is defined as:

y(k) =
N

∑
i=0

air(k− i)−
N

∑
i=1

biy(k− i), (7)

∆pu(k) = y(Ts
−1)− y(0), (8)

where y(k) is the response of the system, N is the order of the transfer function, ai and bi are
the numerical constants for each setpoint and response function variables respectively, and
Ts is the sampling period. The constants used for the experiments are given in Appendix A.

3.5. Reward Function

Any given reward r to the UAV after taking an action a ∈ A from state s ∈ S is
calculated using a reward function R(a, s). This function design allows multi-objective
task definition, and critically influences the UAV behaviour during flight missions. This
work proposes Algorithm 1 as a novel algorithm for R(a, s), which incorporates obstacle
avoidance, exploration, and object detection. The proposed algorithm contains several
reward variables, whose values are set following an iterative process of the system in
the simulator to observe the combination that provides the best behaviour of the UAV to
explore the environment and inspect areas with potential victims inside them. Table 2
shows the converged reward values for this implementation.
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Algorithm 1 Reward function R for exploration and object detection.

1: r ← 0
2: if fcrash then
3: r ← rcrash . UAV crashing cost
4: else if froi then
5: r ← rout . Beyond safety limits cost
6: else if fdct then
7: r ← rdtc . Detected object reward
8: r ← r +

[
rdtc ·

(
1− zu−zmin

zmax−zmin

)]
. UAV altitude reward

9: if cv ≥ ζ and a = Down then
10: r ← r + rconf

11: end if
12: else
13: r ← raction . Action cost
14: r ← r−

[
rdtc ·

(
1− zu−zmin

zmax−zmin

)]
. UAV altitude cost

15: r ← r−
[
rdtc ·

(
1− 0.5 4·dv/dw

)]
. Horizontal distance cost

16: r ← r + rfov · ε . Footprint overlap cost
17: end if
18: return r

Table 2. Applied reward values to the reward function R, defined in Algorithm 1.

Variable Value Description

rcrash −50 Cost of UAV crash
rout −25 Cost of UAV breaching safety limits
rdtc +25 Reward for detecting potential victim
rconf +50 Reward for confirmed victim detection

raction −2.5 Cost per action taken
rfov −5 Footprint overlapping cost

The reward function R first evaluates any states that will negatively affect the integrity
of the UAV. R returns negative reward values if a given action a provokes a crash or lets
the UAV fly beyond the safety limits regardless whether the UAV detects a potential victim.
This modelling encourages the UAV to apply a policy that approaches a victim without
colliding with an obstacle in the process. If the UAV detects a potential victim (Step 6),
R calculates a linear function (Step 8), which returns increased values as the UAV gets
closer to the minimum allowed altitude. Once the confidence value cv from the CNN object
detector surpasses a pre-defined threshold, a bigger reward is returned as the potential
victim is assumed to be found (Step 9 and 10).

In case there are no detections, R applies a set of cost functions to encourage a greedy
horizontal exploration of the environment. The first is the inverse function from (Step 8) to
encourage the UAV to explore at the maximum possible altitude to maximise the camera’s
footprint extent. The second is an exponential function (Step 14), which assigns lower cost
values the closer the UAV is to the victim. This function calculates the Manhattan distance
between the UAV and the victim dv and the maximum exploration distance dw, which are
defined as follows:

dv =
n

∑
i=1
|pi − qi|, pi = (xu, yu), qi = (xv, yv) (9)
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dw =
n

∑
i=1
|pi − qi|, pi = (xmax, ymax), qi = (xmin, ymin) (10)

Sub-optimal policies could be generated if a set of distributed victim position particles
are equidistant from the UAV by using Equation (10). Moreover, redundant traversed paths
have been reported in the literature that implemented similar problem formulations [16,27].
The third cost function (Step 16) counteracts the above-mentioned effects by logging the
traversed path by the UAV and introducing the concept of exploration footprint. The
concept records the accumulated visual footprint of the downward-looking camera into
a two-dimensional (2D) map. The map extent equals the extent limits of the surveyed
area, and it is updated after calculating the camera’s footprint once the UAV collects a new
observation. An illustration of the concept is shown in Figure 5.

The overlap ε between the camera’s current footprint and its correspondent location
in the footprint map is defined as follows:

ε =
∑n

i=1 Fi(pu)

n
, ε ∈ [0, 1] (11)

where Fi(pu) are the pixel values of the projected FOV in the footprint map, and n is the
total number of projected pixels in the footprint. A maximum overlap value of 1 indicates
that such action will place the UAV to a fully previously explored area, and, as indicated
in Step 16 of Algorithm 1, the whole penalty value rfov will be added to the reward. A
minimum value of 0 means that a given action will place the UAV in an unexplored area
and no penalty will be added to the reward. Intermediate values of ε represent partial
overlapping, adding a partial penalty value rfov to the reward.

(a)

Figure 5. Cont.
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(b)

Figure 5. Example of a traversed path by the UAV and its corresponding footprint map. (a) Traversed
path of the UAV (orange splines) in a simulated environment. The arrows indicate actions taken
by the UAV per time step. Environment obstacles are depicted with blue and green blocks, and the
believed victim location points are shown using a red point cloud. (b) Accumulated traced footprint
using the extent of the camera’s FOV. Explored areas are depicted in black and unexplored areas in
white. The higher the overlap of explored areas after taking an action a ∈ A, the higher the footprint
overlap cost.

3.6. Observations

A captured observation o ∈ O—data from UAV sensors about the state of the environ-
ment and the UAV itself (illustrated in Figure 2)—is defined as follows:

o = (opu , odtc, opv , oζ , oobs), (12)

where opu is the UAV position calculated by the local position estimator of the autopilot,
odtc is the flag triggered by the very first detection of a potential victim by the CNN object
detector, opv and oζ are the local positions of the victim and the detection confidence,
respectively, both of them defined only if there are any positive detections, and oobs is the
flag triggered after processing the 3D occupancy map for any obstacles located in front of
the UAV. The detection confidence oζ , defined in Equation (13), is a summary statistic that
measures the frequency of positive detections between the last two observation calls:

oζ =
∑n

i=1 odtci

n
, (13)

where n is the number of processed image frames between observation calls, and odtc is the
flag indicating a positive detection per processed frame i.

3.7. Observation Model

An advantage of ABT compared to other solvers is that the probabilistic transition
functions T and Z do not require to be explicitly defined, but instead it uses a generative
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model. This model generates T and Z using a modelled observation o given an action
a and the next state s′. In this implementation, the variables contained in the generative
model are the local position of the UAV s′pu , the local position of the victim s′pv , and the
detection confidence oζ . The estimation of s′pu follows the UAV motion estimations detailed
in Section 3.4.

Potential victim detections and their subsequent positioning estimations are condi-
tioned by the camera pose at the UAV frame and its projected footprint of the environment.
Specifically, if the 2D local position coordinates of the victim s′pv(x, y) are within the pro-
jected footprint limits of the camera, the victim is assumed to be detected. This estimation
is done by calculating the sum of angles between a 2D point (i.e., s′pv ) and each pair of
points that constitute the footprint boundaries (the footprint rectangular corners) [33]. The
2D projected footprint extent l of a vision-based sensor, illustrated in Figure 6, can be
calculated using Equations (14) and (15):

ltop, bottom = s′pu(z) · tan
(

α± tan−1
(

h
2 f

))
, (14)

lleft, right = s′pu(z) · tan
(
± tan−1

(
w
2 f

))
, (15)

where s′pu is the UAV altitude, α and β are the camera’s pointing angles from the vertical
z and horizontal x axis of the world coordinate frame, w is the lens width, h is the lens
height, and f is the focal length.

Ground

Figure 6. Field of view (FOV) projection and footprint extent of a vision-based sensor. The camera
setup on the UAV frame defines α as the pointing angle from the vertical (or pitch) and determines
the coordinates of the footprint corners c.

The footprint corners c from the camera’s local coordinate frame I are translated to
the world’s coordinate frame W using the following transformation:

[
c′(x)
c′(y)

]
=

[
s′pu(x)
s′pu(y)

]
+

[
cos(ϕu) − sin(ϕu)
sin(ϕu) cos(ϕu)

][
c(x)
c(y)

]
, (16)
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where s′pu is the next UAV position state, and ϕu is the Euler yaw angle of the UAV. However,
as no actions involve adjusting the heading of the UAV mid-flight, and assuming yaw
estimation errors are negligible, Equation (16) is simplified as follows:

[
c′(x)
c′(y)

]
=

[
s′pu(x) + c(x)
s′pu(y) + c(y)

]
. (17)

The detection confidence oζ that comes as part of the output data from the CNN object
detector is modelled using Equation (18):

oζ =
(1− ζmin)(duv − zmin + ζmin)

zmax − zmin
, (18)

where ζmin is the minimally accepted confidence threshold, zmax and zmin are the maximum
and minimum UAV flying altitudes respectively, and duv is the Manhattan distance between
the UAV and the victim.

4. Experiments

The proposed system is evaluated under the context of SAR to autonomously scout
a bushland area and find a lost person (victim). The following subsections describe the
environment setup, victim locations, hardware and software used, and tested flight modes
to accomplish the mission. The experiments assume the environmental terrain and 3D
occupancy map have been generated prior to launching the UAV to survey the area.

4.1. Environment Setup

The system was tested under a simulated replica of the Queensland University of Tech-
nology (QUT) Samford Ecological Research Facility (SERF), located at 148 Camp Mountain
Road, Samford QLD 4520, Australia. SERF is a 51 hectare property comprising a pro-
tected dry sclerophyll forest and grazing zones. From this property, a smaller 2.25 hectare
of a mostly flat area was chosen for the tests as it contains an environment with a rich
combination of open, mixed, and dense tree canopy areas, as depicted in Figure 7a.

The environment was emulated using the Gazebo Robotics Simulator. High-fidelity
terrain textures from SERF were generated after projecting a high-resolution georeferenced
red, green, blue (RGB) mosaic onto the world’s surface, as illustrated in Figure 7b. Imagery
datasets for the mosaic are captured using a DJI Zenmuse XT2 camera (DJI, Shenzhen,
China), mounted on a DJI M210 V2 (DJI, Shenzhen, China). The UAV collected the data at
an above ground level (AGL) height of 60 m, 70% overlap, and 60% sidelap, at a constant
speed of 10 m/s. Orthomosaics have been produced from video files by extracting and
georeferencing still images, significantly increasing the area coverage rates.

Relevant obstacles in the environment, such as trees and greenhouses, are placed
following their corresponding projections in the world’s terrain. In addition, the altitude
values of each tree in the scene are set following a LiDAR dataset collected from a Hovermap
mapper (Emesent Pty Ltd., QLD, Australia), shown in Figure 7c. The dataset has been
captured by mounting the Hovermap into a DJI M600Pro (DJI, Shenzhen, China) at an
AGL height of 60 m and constant speed of 5.4 m/s.
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(a)

(b) (c)

Figure 7. QUT Samford Ecological Research Facility (SERF) virtual environment setup. (a) Property
boundaries of SERF (orange) and simulated region of interest (red). (b) Isometric view of the virtual
SERF instance in Gazebo using a high-resolution red, green, blue (RGB) mosaic as the terrain texture.
(c) Collected georeferenced LiDAR at SERF using a Hovermap mapper (Emesent Pty Ltd., QLD,
Australia). LiDAR data are used to set accurate building and tree canopy heights in the simulated
environment.

4.2. Victim Locations

Two sets of experiments with a single victim (male adult) at two locations are proposed
to validate the system in terms of detection complexity. The first location (L1) setup (latitude
152.87309239; longitude −27.38938274) displays the victim in an area free of obstacles and
no visibility challenges from streamed UAV data. The second location (L2) setup (latitude
152.87300287; longitude −27.38966054) features the victim located close to one of the trees
where partial or full occlusion may occur as portrayed in Figure 8. For both locations, the
victim is static, lying on the ground with a heading of 0◦ from the north compass.
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(a) (b)

Figure 8. Top-down visualisation and detection challenges of the victim placed at location L2.
(a) Partial occlusion of the victim from the tree branches and leaves. (b) Magnified view of the victim
from Figure 8a.

4.3. Hardware

The system architecture shown in this paper (Figure 2) classifies hardware into two
primary components: (1) the companion computer, which runs all of the modules as if the
system is tested on real flight tests; and (2) the workstation that supports the simulated
environment and the SIL implementation of the autopilot.

The companion computer selected for these experiments follows the recommended
hardware used by Sandino et al. [27] for onboard navigation using small quadrotor UAVs.
The computer vision, decision-making, motion, and 3D occupancy mapping modules
run on an UP2 (AAEON Technology Inc., New Taipei City, Taiwan). Relevant specifica-
tions include a 64-bit quad-core Intel® Pentium® N4200 processor running at 1.1 GHz,
64 GB eMMC solid state drive, 8 GB DDR3 RAM, four FL110 USB 3.0 connectors, two
Ethernet controllers, two high-speed UART controllers, and one mPCIe connector. The
mPCIe connector from the UP2 is used to plug an AI CORE Movidius Myriad X VPU 2485
and load CNN object detectors and perform real-time inference.

The simulated environment setup, ground control station, and the autopilot (running
in SIL mode) are tested under a desktop computer with the following specifications: 64-bit
12-core Intel® Core® i7-8700 CPU running at 3.2 GHz, 512 GB solid state drive, 32 GB DDR4
RAM, 6 GB NVIDIA GeForce GTX 1060, six (6) USB 3.0 ports, and one Ethernet controller.

4.4. Software and Communications

The presented system applies a set of various software solutions per module. It uses
the robot operating system (ROS) [34] as the common middleware for communications and
allows the modular design presented in this paper. The software for both the companion
computer and desktop runs under Linux Ubuntu 18.04 64-bit operating system.

The CNN model architecture used to detect potential victims in the computer vision
module is a Google MobileNet single-shot detector (SSD) [35]. This instance of MobileNet
SSD is tuned using pre-trained weights from the PASCAL VOC2012 dataset and deployed
using the Caffe framework [36]. The model classifies up to 21 unique objects from the
PASCAL dataset, and achieves a mean average precision of 72.7%. The computer vision
module only filters and outputs the class person, and positive detections with a confidence
of at least 60%. The CNN is loaded to the VPU using OpenVINO and OpenCV libraries.
The UAV system is not limited to this detector, and other CNN models trained with
airborne specific datasets can be implemented instead. Nevertheless, existing limitations
from the chosen model (i.e., most of the labelled images were taken from a front-view
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camera configuration) aid its intentional usage to demonstrate of the robustness of the
motion planner against higher levels of detection uncertainty.

The key nodes of the decision-making module are programmed using the C++ pro-
gramming language and the TAPIR toolkit [37], which implements the ABT online POMDP
solver. The mapping module, which contains 3D occupancy map node for obstacle avoid-
ance, runs under the OctoMap library [38]. A benefit of using OctoMap is the capability
of generating and updating occupancy maps from 3D point cloud data such as LiDAR or
depth sensors. Therefore, the LiDAR data captured at SERF by Hovermap are loaded to
generate an initial occupancy map of the environment, as shown in Figure 9.

Figure 9. Three-dimensional (3D) occupancy map from the Hovermap LiDAR data of The Samford
Ecological Research Facility (SERF). Occupied cells represent the physical location of various tree
species and greenhouses present at SERF.

The emulation of the autopilot is performed using the PX4 SIL plugin for Gazebo. This
plugin provides a high-fidelity experience of the interface and flight controller behaviour
with other modules. The communication interface between the motion module and the
PX4 autopilot (with the SIL Gazebo plugin) is based on the second version of the Micro Air
Vehicle Link (MAVLink) protocol [39] and applied through MAVROS, a ROS wrapper of
MAVLink. Telemetry to the ground control station is achieved using QGroundControl via
a UDP connection.

4.5. UAV Flight Modes

Three flight modes are proposed to evaluate the system at each victim location men-
tioned in Section 4.2. From a SAR application context, the presumed location of the victim
is unknown. Hence, the flight modes are designed to scout the entire delimited flying area.

4.5.1. Mission Mode

The first flight mode, denominated here as mission mode, is intended to be served
as the UAV motion planner baseline for this study. This flight mode uses the traditional
survey approach provided by many modern flight controllers. Typically, a sequential list
of position waypoints that follows the desired survey pattern by the pilot are generated
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by a ground control station software and sent to the UAV autopilot. The flight plan to
assess this mode follows the flight parameter values from Table 3, and is compiled using
QGroundControl, as shown in Figure 10. This flight mode is triggered with the UAV on the
ground and allows the UAV to take off, reach the initial position waypoint, and perform
the survey. The mode terminates after completing the survey and manoeuvring the UAV
back to its launch position.

Table 3. Flight plan parameters for mission mode.

Property Value

UAV altitude 20 m
UAV velocity 2 m/s

Camera lens width 1.51 mm
Camera lens height 1.13 mm
Camera focal length 3.6 mm

Image resolution 640 by 480 px
Overlap 30%

Bottom right waypoint −27.3897972◦, 152.8732300◦

Top right waypoint −27.3892651◦, 152.8732300◦

Top left waypoint −27.3892593◦, 152.8728180◦

Bottom left waypoint −27.3897858◦, 152.8728180◦

Figure 10. Designed flight plan that the UAV follows in mission mode. The survey is set for a single
pass of the setup at a constant height of 20 m, UAV velocity of 2 m/s, and overlap of 30%.

4.5.2. Offboard Mode

The second flight mode, denominated here as Offboard mode, runs the POMDP-based
motion planner described in Section 3. In concordance to the flight plan design from
mission mode, the initial conditions set for the offboard mode and defined variables from
Section 3.4 are detailed in Table 4.
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Table 4. Initial conditions set to the POMDP motion planner.

Variable Description Value

zmax Maximum UAV altitude 21 m
zmin Minimum UAV altitude 5.25 m
pu0 Initial UAV position (−27.3897972◦, 152.8732300◦, 20 m)
ϕu UAV Heading 0◦

δz UAV climb step 2 m
λ Frame overlap 30%
α Camera pitch angle 0◦

ζmin Minimum detection confidence 30%
ζ Confidence threshold 85%
γ Discount factor 0.95
∆t Time step interval 4 s

tmax Maximum flying time 8 min

Before the planner is run at the initial UAV location pu0, TAPIR—the toolkit the
planner is coded—runs an offline policy solver for two seconds. Then, for every time step,
an observation is collected and TAPIR triggers the solver online to update the motion policy
with a timeout of 800 ms. The remaining time is an idle period while the UAV moves to the
next position following the action taken from the updated policy. Compared to the first
flight mode, this flight mode finishes once the maximum flight time is exceeded or if the
victim is found (i.e., ζ ≥ 85%).

The initial state belief b0 of the POMDP model consists of the position of UAV and
the victim. The UAV position belief follows a normal distribution with a mean of pu0 and
standard deviation of 1.5 m. The victim position belief follows a uniform distribution
whose limits are equivalent to the survey extent of the flight plan from mission mode, as
shown in Figure 11.

Figure 11. Probabilistic distribution of initial UAV and victim position belief across the survey extent.
The UAV position belief (orange points) follows a normal distribution with mean equals to pu0 and
standard deviation of 1.5 m. The victim position belief (red points) follow a uniform distribution,
whose limits are equivalent to the survey extent of the flight plan from mission mode.

4.5.3. Hybrid Mode

The third flight mode, known as hybrid mode, combines the methods from mission
and offboard modes. This mode splits the overall navigation task into two components:
it uses mission mode to skim the survey area and triggers the POMDP motion planner
after a first positive detection. The primary difference in the design of the POMDP motion
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planner between the offboard and hybrid modes relies on the modelling of the initial belief
b0. In a hybrid mode, the mean value of the normal distribution of the UAV position belief
is now defined as the UAV position coordinate, where the first victim detection takes place.
Instead of distributing the victim position belief uniformly across the entire flying area, this
mode constraints the search area to the extent of the camera’s FOV, as shown in Figure 12.

Figure 12. Probabilistic distribution of initial UAV and victim position belief under hybrid flight
mode. The UAV position belief (orange points) follows a normal distribution, with a mean equals to
the current UAV position where a potential victim is first detected, and standard deviation of 1.5 m.
The victim position belief (red points) follow a uniform distribution whose limits are equivalent to
the extent of the camera’s FOV.

5. Results

Validation of the system through the presented SAR case study contains the following
performance metrics: (1) Heatmaps of recorded GNSS coordinates of any detected victims;
(2) accuracy of output detections and collisions; (3) speed analysis of POMDP-based motion
planner in offboard and hybrid flight modes; and (4) system speed to cover the survey area
or until the victim is detected. Each performance indicator is evaluated per flight mode
and victim locations (which represent various detection complexities because of occlusion
from nearby obstacles). Each setup combination (flight mode and victim location) was
tested for 20 iterations. Demonstrative videos of the UAV system operating under mission
(Video S1), offboard (Video S2), and hybrid (Video S3) flight modes can be found in the
Supplementary Materials section.

A series of heatmaps of GNSS coordinates (from detected victims) returned by mission,
offboard and hybrid flight modes are shown in Figures 13–15 respectively.

The distribution of GNSS coordinates in the heatmaps suggests a considerably higher
precision when the system runs offboard and hybrid flight modes to report victim locations
compared to the baseline (mission) flight mode. The visualisation complexity from the
defined victim locations does not indicate any significant differences to the precision
outputs of the system. The variable distribution of victim GNSS coordinates in mission
mode (Figure 13) was caused by false positive readings from specific object visualisations.
For this case study and environment setup, other objects wrongly detected as people
included trees, greenhouse rooftops, and to a lesser degree, bare grass. Examples of these
detections are displayed in Figure 16.
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(a) (b)

Figure 13. Heatmaps from recorded GNSS coordinate points from detections in mission mode. The
amount of false positive locations were triggered by the CNN model from detecting other objects
as people during the survey. (a) First victim location (blue dot) in an open area. (b) Second victim
location (blue dot) nearby a tree.

(a) (b)

Figure 14. GNSS coordinates’ heatmaps of confirmed victim detections by the POMDP-based motion
planner in offboard flight mode. (a) First victim location (blue dot) in an open area. (b) Second victim
location (blue dot) nearby a tree.

(a) (b)

Figure 15. GNSS coordinates’ heatmaps of confirmed victim detections by the POMDP-based motion
planner in hybrid flight mode. (a) First victim location (blue dot) in an open area. (b) Second victim
location (blue dot) nearby a tree.
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Figure 16. Most common object visualisations that triggered false positive readings of people in
mission mode. Other objects wrongly detected as people included trees, greenhouse rooftops, and to
a lesser degree, bare grass.

The detection outputs of the CNN model also had an impact in the accuracy metrics of
the system when surveying the studied area in mission mode. A summary of the accuracy
and collision metrics per flight mode and victim location is shown in Table 5.

Table 5. Accuracy and collision metrics of the system to locate a victim at two locations (L1 and L2).
Each setup was evaluated for 20 iterations.

Setup Detections (%) Misses (%) Non-Victims (%) Collisions (%)

Mission (L1) 20.0 0.0 80.0 0.0
Mission (L2) 17.4 0.0 82.6 0.0

Offboard (L1) 100.0 0.0 0.0 0.0
Offboard (L2) 100.0 0.0 0.0 0.0
Hybrid (L1) 95.0 0.0 0.0 5.0
Hybrid (L2) 90.0 5.0 5.0 0.0

Regardless of the victim location in the surveyed area, the use of the MobileNet SSD
CNN model had a negative impact on any flights using mission mode. After testing
each setup combination for 20 iterations, the positive detection rate for victims in a trivial
location (or Location 1 (L1) as referred in Table 5) did not exceed 20% of the reported
detections. In contrast, offboard and hybrid flight modes reported improved detection
rates of 100% and 92.5% respectively. An overall slight decrease in the victim detection
rates was observed between trivial and complex locations, where up to 5.0% of the iteration
runs failed to confirm a victim’s location in hybrid mode. The tests reported that 2.5% of
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the iterations in hybrid mode (5.0% for Location 1) with the UAV colliding with obstacles.
However, taking into account all of the tested runs from offboard and hybrid modes, the
overall collision probability experienced using the POMDP-based motion planner is 1.25%.

A speed analysis of the evaluated flight modes tracked the elapsed time from the
initial position waypoint until a victim detection was confirmed. The collected data are
represented with box plots, as shown in Figure 17.

100 200 300 400 500 600 700

Offboard (L1)

Offboard (L2)

Hybrid (L1)

Hybrid (L2)

Duration (s)

Figure 17. Distribution frequency of the elapsed time until the POMDP-based motion planner
confirmed a detected victim in a trivial (L1) and complex (L2) locations.

The data distribution shows a wider range in the top quartile and top whisker on the
conducted tests using offboard mode for both victim locations. This distribution anomaly
was caused by increased uncertainty given to the solver to compute a motion policy for
a higher extent of area to survey compared to hybrid mode. Similarly, a bigger search
area resulted in increased combinations of traversed paths to survey and locate the victim.
Recorded paths indicated a trend of the solver to navigate towards the centre of the area
extent, surrounding trees, as shown in Figure 18a.

Data distribution and traversed paths on tests under hybrid flight mode were more
consistent as the exploration extent is constrained to the lawnmower pattern followed in
mission mode. However, elapsed times in hybrid mode were considerable higher at both
victim locations because of the occurrences of false positives. As first detection readings
trigger offboard mode to inspect such locations, the system required additional time to
confirm or discard the presence of any victim. An illustration of the traversed path by the
UAV in hybrid flight mode is shown in Figure 18c.

The average elapsed time to locate the victim in locations 1 and 2, shown in Table 6,
indicates contrasting values between offboard and other flight modes. A trend to detect a
victim at location 2 quicker than at location 1 was caused by the proximity of the initial
position waypoint to begin the search (bottom right corner of the survey pattern). Overall,
the system required 2.3 times more time to survey the flight area in hybrid mode than
in mission mode. Nonetheless, using tuned CNN models from UAV image datasets is
expected to decrease the instances of false positive readings at it was the case in this work.
As the primary contribution of this work is on presenting a fully autonomous robust motion
planner system against high levels of object detection uncertainty and partial observability,
a pre-trained detector from a PASCAL VOC2012 dataset was purposely used to test the
performance of the system.
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(a) (c)

(b) (d)

Figure 18. Illustration of two traversed paths using the proposed POMDP-based motion planner.
(a) Traversed path of the UAV in offboard mode. (b) Probabilistic belief locations of the UAV (orange)
and victim (red), the latter covering the entire surveyed area. (c) Traversed path of the UAV in hybrid
mode. (d) Common path pattern by the UAV to confirm or discard positive detections sent by the
computer vision module.

Table 6. Average duration among flight modes to locate the victim. Here, M1, M2, and M3 refer to
mission, offboard, and hybrid flight modes, respectively.

Condition Duration M1 (s) Duration M2 (s) Duration M3 (s)

Victim at Location 1 89 197 238
Victim at Location 2 139 144 353
Entire surveyed area 256 — 622

A further preliminary evaluation of the UAV system presented in this paper has been
conducted with real flight tests at QUT SERF. The UAV framework has been adopted
from the system tested by Sandino et al. [27] for a SAR case study in GNSS-denied en-
vironments, which follows a similar system architecture for simulation and real flight
tests. The demonstrative flights tested mission, offboard, and hybrid flight modes to locate
an adult mannequin placed in a trivial location. As shown in Figure 19, the UAV frame
consists of a carbon-fibre Holybro X500 quadrotor, a Pixhawk 4 with GPS and 433 MHz
telemetry radio. The tested companion computer in HIL mode (Section 4.3) and software
tools (Section 4.4) are integrated to the frame during the tests, as well as a GoPro Hero 9
for real-time streaming of RGB frames. A detailed visual representation of the system can
be found in supplementary video S4.
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(a)

(b)

Figure 19. Demonstration of the presented UAV system in hardware with real flight tests at QUT
SERF. (a) Holybro X500 quadrotor UAV frame kit with UP2 as a companion computer and a GoPro
Hero 9 as RGB camera. (b) UAV detecting an adult mannequin for the first time while navigating in
offboard flight mode.

6. Discussion

The presented system constitutes a step towards fully autonomous navigation onboard
small UAVs in real-world environments under uncertainty and partial observability. This
research expands the navigation problem of Sandino et al. [26,27], by (1) formulating
a more sophisticated reward function for a better discrimination between exploration
and object inspection; (2) proposing optimised action commands based on the desired
overlap between the camera’s FOV and the UAV altitude; and (3) incorporating a new
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flight mode (i.e., hybrid mode) to further optimise the exploration capabilities when partial
information on the environment is provided beforehand (e.g., UAV navigation in outdoor
scenarios, compared to GNSS-denied environments). Furthermore, this work indicates an
enhanced design of UAV simulation environments by using realistic representations of
ground textures and elevation, obstacle location and 3D occupancy maps from airborne
UAV georeferenced mosaic and LiDAR datasets.

The system architecture and POMDP motion planner presented in this paper improve
the autonomy capabilities of small UAVs under environment and object detection uncer-
tainty. Under the presence of uncertainty from potential incorrect readings of vision-based
detectors, such as CNNs, the standard objective of many existing approaches is to improve
the performance metrics of their customised CNN-based object detectors for real-world
UAV operations [40]. In contrast, this paper proposes an alternative approach to this
uncertainty issue by augmenting the cognitive power onboard UAVs. Using reactive UAV
systems that calculate and update a motion policy while interacting with the environment
allow higher flexibility to detect objects (i.e., victims) at various levels of object detection
uncertainty, regardless if this uncertainty comes from inaccurate detections by the detector
model, noise in the data, or sensor malfunctioning. Even though the performance of the
object detector model can be enhanced with tailored datasets and fit models from UAV
data [41,42], this approach shows the possibility to use UAVs to navigate autonomously and
accomplish a victim finding mission using off-the-shelf detectors, such as MobileNet SSDs.

The speed of the UAV system to survey an area is partly conditioned by the flight
plan design, and especially the maximum surveying altitude. The maximum altitude
is defined by extrinsic and intrinsic factors on a case study basis. Extrinsic factors in-
clude the maximum height of surrounding obstacles, lifting restrictions in high-altitude
environments, and local flight regulations. Intrinsic factors are defined by hardware and
software limitations in the UAV to detect objects (i.e., victims). For instance, the camera
lens properties (e.g., sensor width and focal length) define the camera’s FOV and, thus, the
footprint extent and scale of observed objects. The image resolution of streamed camera
frames into the computer vision module also determines the number of given pixels that
represent an object to be detected using CNNs [43]. In this implementation, the system
could capture positive victim detections using the MobileNet SSD model for a maximum
surveying altitude of 20 m (and camera lens properties shown in Table 3). However, other
CNN-based object detectors trained with airborne datasets are expected to allow surveys
at higher altitudes and object detections with smaller scale visualisations, which translate
in reduced duration for the UAV to survey the same area extent [40,43].

The design of the computer vision module is not limited to the MobileNet SSD detector,
but it can be extended with other CNN architectures compatible with OpenVINO. Zhang
et al. [44], for instance, propose a global density fused CNN model for UAV images that
addresses object detection uncertainty factors such as variations in scale, viewpoint, and
occlusion. A survey on CNN models for object detection on the VisDrone2019 dataset—an
established low-altitude UAV dataset—shows that recent architectures, such as Cascade
RCNN, RefineDet, and CornerNet outperform methods such as YOLO, SSD, and faster
RCNN [40]. However, low average precision values for the best performing models (i.e.,
17.41% on the VisDrone2019 dataset compared to 40.6% on the MS-COCO dataset) implies
that further efforts in CNN architectures for object detection from airborne UAV data
are required. Future implementations of CNN models discussed above could require a
separate study of any model performance impacts caused by the streaming and processing
of high-resolution frames onboard sub-2 kg UAVs, and onboard inference of CNN models
in embedded computing systems, such as the UP2, Jetson Nano, and Edge TPU [45,46].

The UAV system presented in this paper ultimately offers several benefits for first
responders in the event of an emergency. The system provides real-time telemetry of
camera frames processed onboard the UAV as, thus, prior secured risk and accessibility
assessment of the environment, the presence of any found victims, and their visible health
conditions. The generated list of GNSS coordinates shown in Figures 13–15 can be further
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transferred to the ground team (SAR squads) to update intervention strategy, and other
UAVs for air-to-ground first aid deployment. An additional extension of this system is the
use of other sensors and computer vision models such as Doppler radars, microphones,
and thermal cameras [5,47,48], which provide a better understanding of health conditions
from potential victims.

7. Conclusions

This article presented a modular system for autonomous motion planning and object
finding, capable of running in resource-constrained hardware onboard small UAVs. The
system uses a POMDP to increase autonomy of UAVs for obstacle avoidance, environment
exploration, and object inspection in outdoor environments under object detection uncer-
tainty and partial observability. The system was evaluated with an emulated SAR scenario
in Gazebo using real-world airborne georeferenced rasters, and airborne LiDAR point
clouds to produce 3D occupancy maps. The task consisted of finding a lost person last seen
in a bushland in two locations at various levels of occlusion and complex path planning
strategies because of nearby obstacles. High-fidelity simulation results were achieved
as the proposed system architecture combines SIL to emulate real-behaviour from a PX4
autopilot, and HIL for onboard inference of a MobileNet SSD detector, and the computed
motion policy using TAPIR and the ABT solver.

The proposed UAV system was tested in simulation and with preliminary real flight
tests with three flight configurations (i.e., mission, offboard and hybrid) and four perfor-
mance metrics: (1) heatmaps of accumulated GNSS coordinates of the victim; (2) accuracy
metrics to detect a victim; (3) speed analysis of proposed flight modes utilising the POMDP-
based motion planner; and (4) speed analysis until the victim is found. Heatmaps show
that false positive victim detections recorded in mission mode, from objects, such as trees,
building structures and grass, were discarded (or rejected) by the UAV after exploring the
area using the POMDP-based planner with and without a pre-defined flight plan (i.e., in
hybrid and offboard modes respectively). Offboard and hybrid flight modes achieved the
highest detection accuracy rates (of 100% and 92.5% respectively), and a slight decrease in
detection rates (from 95.0% to 90.0%) was observed between trivial and complex victim
locations. The elevated occurrence of false positive detections from the MobileNet SSD
detector resulted in increased flight times in offboard and hybrid flight modes. However,
the use of other CNN architectures, such as Cascade RCNN, RefineDet, and CornerNet are
expected to reduce flight times of the UAV to inspect and reject false positive detections.

Further research avenues include a detailed experimental analysis using real flight
tests, static and dynamic obstacles, and with sensors commonly used for SAR applications,
such as thermal cameras. Placing the victim at random locations or increasing the number
of victims could contribute to further understand the limits of the used POMDP solver.
Similar case studies that can also be explored include surveillance for victims, using
dynamic camera gimbal configurations and computer vision systems, which provide
additional statistics of the victim, such as age, gender, and heartbeat rate. An evaluation of
performance impacts in resource-constrained hardware for onboard inference using more
complex CNN architectures for UAV object detection, and processing of high-resolution
streamed frames, could help understand the limits of the proposed system architecture in
sub-2 kg UAVs. Other sequential decision-making algorithms could also be implemented
to compare the performance of the ABT solver.

Supplementary Materials: The following video demonstrations are available online: Video S1:
system demonstration using mission mode, available at https://youtu.be/H1qmdo1Qzok (accessed
on 6 November 2021); Video S2: system demonstration using offboard mode, available at https:
//youtu.be/ykPI-yimgtQ (accessed on 6 November 2021); Video S3: system demonstration using
hybrid mode, available at https://youtu.be/cFzx8XtGI2w (accessed on 6 November 2021); and
Video S4: Preview of UAV system running on real hardware at QUT SERF, available at https:
//youtu.be/U_9LbNXUwV0 (accessed on 6 November 2021).
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2D two-dimensional
3D three-dimensional
ABT augmented belief trees
AGL above ground level
CNN convolutional neural network
FOV field of view
GNSS global navigation satellite system
HIL hardware in the loop
LiDAR light detection and ranging
MAVLink micro air vehicle link
MDP Markov decision process
MTOW maximum take-off weight
POMDP partially observable Markov decision process
QUT Queensland University of Technology
RGB red, green, blue
ROS robot operating system
SAR search and rescue
SERF Samford Ecological Research Facility
SIL software in the loop
SSD single shot detector
TAPIR toolkit for approximating and adapting POMDP solutions in real time
UAV unmanned aerial vehicle
VPU vision processing unit
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Appendix A. Difference Equation Constants

A Holybro S500 quad-rotor UAV (Holybro, China) was tested in a controlled VICON
flying arena for a series of position responses in the x, y and z Cartesian axes. The UAV
responses per axis were recorded for increments of 0.5 m every five seconds. The obtained
difference equation constants for a sampling period Ts = 0.1 s are defined in Tables A1–A3:

Table A1. Difference in equation constants for the x Cartesian axis.

Variable Value

a0 +0.012237830217107
a1 +0.005333276901521
a2 −0.006904553315587
b0 −1.871779712793530
b1 +0.882425299507294

Table A2. Difference in equation constants for the y Cartesian axis.

Variable Value

a0 +0.015832293916205
a1 +0.004320531132859
a2 −0.011511762783346
b0 −1.897777836334432
b1 +0.906553659751270

Table A3. Difference in equation constants for the z Cartesian axis.

Variable Value

a0 +0.039080023298553
a1 −0.074298943390646
a2 −0.003370614541135
a3 +0.074305261982209
a4 −0.035703090165855
b0 −3.839717616513733
b1 +5.53607216125848
b2 −3.55188073812765
b3 +0.855538823595518
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Chapter 6 

Reducing Object Detection Uncertainty 
from RGB and Thermal Data for UAV 
Outdoor Surveillance 

BENEFITS of using UAVs have improved response efforts in time-critical applications as they pro-

vide a fexible and affordable eye in the sky safely and quickly. Recent advances in computer 

vision and machine learning have enabled the automated detection, localisation, and quantifcation 

of objects or persons of interest from streamed camera frames. 

The research presented in this chapter is the fourth paper published from this research and ex-

tends the UAV navigation problem for outdoor environments presented in Chapter 5 with a frame-

work implementation and comprehensive real fight tests using a sub 2 kg quadrotor UAV. The frame-

work for autonomous navigation in outdoor scenarios under uncertainty was tested with a SAR case 

study to locate a person last seen in a bushland. The scalability of the framework is presented with 

preliminary experimental results using thermal imagery and a custom CNN object detector, and 

demonstrate greater fexibility of the UAV to interact with the environment and obtain clearer visuali-

sations of any potential victims using RGB and thermal cameras. 
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Abstract—Recent advances in Unmanned Aerial Vehicles (UAVs)
have resulted in their quick adoption for wide a range of
civilian applications, including precision agriculture, biosecu-
rity, disaster monitoring and surveillance. UAVs offer low-cost
platforms with flexible hardware configurations, as well as an
increasing number of autonomous capabilities, including take-
off, landing, object tracking and obstacle avoidance. However,
little attention has been paid to how UAVs deal with object
detection uncertainties caused by false readings from vision-
based detectors, data noise, vibrations, and occlusion. In most
situations, the relevance and understanding of these detections
are delegated to human operators, as many UAVs have limited
cognition power to interact autonomously with the environment.
This paper presents a framework for autonomous navigation
under uncertainty in outdoor scenarios for small UAVs using a
probabilistic-based motion planner. The framework is evaluated
with real flight tests using a sub 2 kg quadrotor UAV and
illustrated in victim finding Search and Rescue (SAR) case study
in a forest/bushland. The navigation problem is modelled using
a Partially Observable Markov Decision Process (POMDP), and
solved in real time onboard the small UAV using Augmented
Belief Trees (ABT) and the TAPIR toolkit. Results from ex-
periments using colour and thermal imagery show that the
proposed motion planner provides accurate victim localisation
coordinates, as the UAV has the flexibility to interact with the
environment and obtain clearer visualisations of any potential
victims compared to the baseline motion planner. Incorporating
this system allows optimised UAV surveillance operations by
diminishing false positive readings from vision-based object
detectors.
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1. INTRODUCTION
Recent advances in autonomous navigation of Unmanned
Aerial Vehicles (UAVs)—also known as drones—have re-
sulted in their gradual adoption in a set of civilian and time-

978-1-6654-3760-8/22/$31.00 ©2022 IEEE

critical applications such as surveillance, disaster monitoring,
and Search and Rescue (SAR) [1–4]. UAVs offer unique
benefits such as compact sizes and low cost to scout outdoor
and indoor environments, real-time telemetry and camera
streaming to monitor challenging and otherwise inaccessible
environments, extensive payload adaptability, and extensive
possibilities to augment navigation capabilities through soft-
ware [5–8].

One critical challenge in deploying UAVs and robots in
general into real-world and time-critical applications is the
ever-presence of uncertainty. Factors that cause uncertainty
are diverse, and they can be classified as external or in-
ternal. External factors come from sources beyond the
scope of the UAV, such as poor weather and illumination
conditions, strong gusts, unknown situational-awareness of
surveyed environments, and partial observability. Internal
factors include sub-optimal camera calibration settings, low
image resolution, noisy camera frames during streaming, or
imperfect detection outputs from computer vision detectors.
As shown in Figure 1, uncertainty sources that are poorly
managed can compromise the behaviour of UAVs and the
flight mission itself [9]. Thus, it is essential to incorporate
cognitive capabilities in UAVs to broaden their use in more
real-world scenarios [10].

Figure 1. Unmanned aerial vehicle (UAV) navigating in
environments under uncertainty and partial
observability. A small UAV with autonomous

decision-making should be able to plan sequential sets of
actions for optimal navigation trajectories, despite

limitations from imperfect sensor data.

The elevated number of stranded people and human loss is a
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problem that is far from solved [11]. In Australia alone, an
average of 38,000 people per year are reported missing and
around 2% of them (or 720 persons) are never located [12]. In
the event of an emergency—where time management plays a
critical factor in the success of the rescue operation—the goal
to identify and locate as many victims as quick as possible.
Thus, UAV technology for autonomous navigation and vic-
tim detection in challenging environments could assist first-
responders in locating as many victims as soon as possible.

Research works on applied decision-making theory in UAVs
is extensive and indicates that using Partially Observable
Markov Decision Processes (POMDPs) onboard UAVs can
increase their cognitive capabilities for autonomous naviga-
tion and object detection under uncertainty [13–15]. UAV
frameworks for object detection and tracking have been tested
in cluttered indoor environments and in the absence of Global
Navigation Satellite System (GNSS) coverage [8, 16–18].
POMDPs have also been applied to solve multi-objective
problems in UAVs, addressing tasks such as path planning,
multiple object detection and tracking, and collision preven-
tion [19, 20].

In time-critical applications such as SAR, real-time camera
streaming is critical to comprehend the context of the envi-
ronment [21]. However, drone pilots have a strong reliance on
their communication systems to control most UAVs. If com-
munication systems fail, the usability of the UAV could be
seriously compromised [22]. Many approaches of POMDPs
applied in UAVs for humanitarian relief operations have been
tested in simulation [23, 24] and very few systems have been
evaluated with real flight test using trivial targets [25].

Research efforts on onboard decision-making under object
detection uncertainty from Convolutional Neural Network
(CNN) models are scarce. Research conducted by Sandino
et al.[8, 18] described a framework and POMDP problem
formulation for a SAR application in GNSS-denied environ-
ments with a sub 2 kg UAV. However, the framework was
only tested in cluttered indoor scenarios.

This paper describes a modular UAV framework for au-
tonomous onboard navigation in outdoor environments under
uncertainty. The framework design aims to reduce levels of
object detection uncertainty using a POMDP-based motion
planner, which allows the UAV to interact with the envi-
ronment to obtain better visual representations of detected
objects. CNN-based computer vision inference and motion
planning can be executed in resource-constrained hardware
onboard small UAVs. The framework is tested with real
flight tests with a simulated SAR mission, which consisted of
finding an adult mannequin in an open area and close to a tree.
Three flight modes are proposed to evaluate the feasibility of
the framework for real-world SAR operations.

This paper extends the research studies of Sandino et al.[8,
18, 26] with the following contributions: (1) an extension
of their evaluated UAV framework—originally designed for
navigation in GNSS-denied environments— for outdoor mis-
sions with GNSS signal coverage, and the design of a novel
flight mode; (2) an additional validation of preliminary results
of their proposed UAV framework with comprehensive real
flight tests; and (3) a scalability approach of the framework
by adapting a thermal camera and a custom object detector to
locate victims using their heat signatures.

The rest of the manuscript is structured as follows: Section 2
details the UAV framework design for autonomous object

detection in uncertain outdoor environments; Section 3 sum-
marises the implemented probabilistic-based motion planner
using a POMDP; The design of conducted experiments using
real flight tests is presented in Section 4; Obtained results
and discussion of performance indicators are provided in
Section 5; In Section 6, conclusions and future avenues for
research are discussed.

2. FRAMEWORK DESIGN
The framework follows a modular system architecture for
autonomous navigation onboard small UAVs as illustrated in
Figure 2. This design extends an existing UAV framework
for autonomous navigation in cluttered environments under
object detection uncertainty, tested in simulation and with real
flight tests in a sub 2 kg quadcopter [18].

Figure 2 illustrates the physical environment (or world) com-
posed by the UAV frame and any attached payloads (i.e.,
RGB or thermal cameras), the victim and obstacles. Acquired
camera frames represent the visual interface (also called
observations) of the surveyed environment by the UAV. The
UAV also contains the autopilot, which translates high-level
action commands into low-level signals that control the UAV
motors. The last hardware component of the UAV frame is
a companion computer, which is allocated to execute soft-
ware algorithms in dedicated modules for computer vision,
mapping, and real-time path planning. Action commands
from the planner are managed by the motion module, which
interfaces with the flight controller of the autopilot.

The following subsections discuss each of the proposed
framework components. The UAV framework used in this
work is not limited to the hardware and software discussed
below. Other UAV frame designs, payloads, autopilots,
vision-based object detectors, planners, and software toolkits
can also be implemented.

UAV Airframe and Payloads

The UAV airframe which offered the best combination be-
tween payload adaptability, size, and endurance for this
research is a Holybro X500 quadrotor kit (Holybro, China).
As shown in Figure 3, key components utilised from the kit
include a Pixhawk 4 autopilot, Pixhawk 4 GNSS receiver,
2216 KV880 brushless motors, 22.86 cm plastic propellers,
and a 433 MHz Telemetry Radio. With dimensions of 41 cm
× 41 cm × 30.0 cm, the UAV carries a four cell 5000 mAh
LiPo battery, for an approximate flight autonomy of 12 min.

The companion computer is an Intel UP2, chosen for its
price tag, number of peripherals and Central Processing Unit
(CPU) architecture. Key specifications include a 64-bit quad-
core CPU at 1.1 GHz, 64 GB eMMC SSD, 8 GB DDR3
RAM, four FL110 USB 3.0 connectors, two High-Speed
UART controllers, and one mPCIe connector.

The proposed framework was tested using two Red, Green,
Blue (RGB) cameras, namely an Arducam B019701 and a
GoPro Hero 9. Thermal imagery is sourced from a FLIR
Tau 2 connected to a ThermalCapture device for real-time
frame streaming. The cameras, which can be interchangeably
used in the proposed framework, are mounted onto an anti-
vibration bracket, pointing to the ground and in parallel to
Earth’s nadir, as seen in Figure 4. Core properties for the
cameras can be found in Table 4 in the Appendix.
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Figure 2. Modular system architecture for autonomous navigation onboard UAVs in uncertain outdoor environments.
The framework portrays the physical environment (or world) composed of the UAV frame, attached payloads, world
obstacles, and the victim. A companion computer is attached to the UAV to execute software algorithms in dedicated
modules for computer vision, mapping, real-time path planning, and a motion server that interfaces the companion

computer with the UAV autopilot.
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Figure 3. Framework implementation in a sub 2 kg
quadrotor UAV. Primary components include: 1) a
carbon fibre Holybro X500; 2) a Pixhawk 4 GNSS
receiver; 3) a Pixhawk 4 autopilot; 4) a 433 MHz

telemetry radio; 5) an Intel UP2 (companion computer);
and 6) payload.

Vision Module

This module consists of a deep learning object detector pro-
cessing raw frames from the GoPro Hero 9 camera. Taking

Figure 4. GoPro Hero 9 mounted onto an anti-vibration
bracket, pointing to the ground and in parallel to Earth’s

nadir.

into account the performance limitations of running deep
learning models in resource-constrained hardware, a Vision
Processing Unit (VPU) is installed in the companion com-
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puter. Convolutional operations that normally run onboard
a CPU or GPU are allocated to the VPU for inference of
CNN models in resource-constrained hardware. In this im-
plementation, the selected VPU is an Intel Movidius Myriad
X, which is connected to the companion computer via the
mPCIe slot. The detection module is programmed in Python
and uses the OpenVINO library to optimise code instructions
to load CNN models into the VPU.

The deep learning model architecture used to detect victims
is an off-the-shelf Google MobileNet Single-Shot Detector
(SSD) [27]. This model is deployed in Caffe [28] and
tuned with pre-trained weights from the PASCAL VOC2012
dataset [29], scoring a mean average precision of 72.7%.
The dataset covers up to 21 class objects (including persons).
However, only positive detections for the class person are
evaluated. Acquired camera frames are fitted into the input
layer of the neural network (i.e., MobileNet SSD model) by
downsizing the frames to 300 × 300 pixels.

Mapping Module

The Mapping module manages 3D occupancy maps, which
are constituted by volumetric occupancy grids and displays
the presence and localisation of objects in the surveyed envi-
ronment. In this implementation, the 3D Occupancy Map are
requested by the Motion and Planner modules to evaluate the
presence of obstacles at selected position coordinates in the
world coordinate frame. The maps are created through the
use of the Octomap library [30].

Planner Module

The planner module computes the motion policy of the
UAV and contains three primary components: (1) an ob-
servation server, which handles raw observations from the
vision module (i.e., detected victims, confidence and victim
coordinates), local position estimations of the UAV, and the
state of the 3D occupancy map; (2) the POMDP motion
planner, which calls the observation server every time the
planner requires new observations; and (3) action commands
computed by the motion policy of the planner and are read by
the motion server. Complete details of the POMDP planner
design can be found in Section 3.

Communication Interface

The UAV framework runs on open-source software tools. The
companion computer runs under Linux Ubuntu 18.04 LTS
O.S. and the Robot Operating System (ROS) melodic. ROS
is a middleware to communicate between the nodes of each
module (following the architecture design from Figure 2).
The Pixhawk 4 autopilot is powered by PX4, which com-
municates with the companion computer through MAVROS,
a ROS implementation of the MAVLink protocol, which is
industry standard for UAV communication and control [31].
The POMDP solver implementation, which is described in
Section 3, also contains a ROS implementation to maximise
the use of visualisation, telemetry and recording tools from
ROS.

3. PLANNER DESIGN
This approach formulates the decision-making problem as a
POMDP. The planner transmits UAV position commands to
the motion planner derived from environment observations.
The discussion presented in this section is adapted from
[26] and only essential parts are shown in this paper for
completeness.

With a taken action a ∈ A, the UAV receives an observation
o ∈ O encoded by the observation function Z(s′, a, o) =
P (o | s′, a). Every decision chain is then quantified with
an estimated reward r, calculated using the reward function
R(a, s). A POMDP uses a probability distribution over the
system states to model uncertainty of its observed states. This
modelling is called the belief b(H) = P[s1 | H], · · · ,P[sn |
H], where H is the history of actions, observations and
rewards the UAV has accumulated until a time step t, or
H = a0, o1, r1, · · · , at−1, ot, rt.

The motion policy π of the UAV is represented by mapping
belief states to actions π : b → A. A POMDP is solved after
finding the optimal policy π∗, calculated as follows:

π∗ := argmax
π

(
E

[ ∞∑

t=0

γtR (St, π (bt))

])
, (1)

where γ ∈ [0, 1] is the discount factor and defines the
relative importance of immediate rewards compared to future
rewards. A given POMDP solver starts planning from an
initial belief b0, which is usually generated using the initial
conditions (and assumptions) of the flight mission.

Assumptions

In this implementation, the formulated problem for explo-
ration and object detection (i.e., victims) using multi-rotor
UAVs in outdoor environments assumes:

• An initial 3D occupancy map of the environment is pre-
loaded to the planner before the UAV takes off.

• Observations come from processed camera frames (by the
Vision module), the 3D occupancy map (by the Mapping
Module), and the estimated local UAV position (by the
Autopilot).

• Only a single, and static victim can be detected at the same
time. If more victims appear on processed camera frames,
the planner will only read data from the victim with the
highest detection confidence values.

• The motion planner starts once the UAV reaches known
position setpoint (i.e., at one of the corners of the surveyed
area).

• The planner stops computing a motion policy once: 1)
the UAV detects a victim whose detection confidence
surpasses a set threshold; 2) the UAV explores the whole
search area extent without finding any victims; or 3) the
UAV exceeds the maximum flight time on air (because of
low levels of battery power).

Actions

UAV actions are defined by seven position commands,
namely forward, backward, left, right, up, down, and hover.
UAV actions that are not included in the action space but
are managed by the autopilot instead include arm, disarm,
take-off, return to launch and land. Each action updates the
position set point of the UAV in the world coordinate frame
by calculating and applying a change of position δ.

The magnitude for δx and δy depends on the estimated
overlap value between camera frame observations, calculated
using Equation (2):

δ = lFOV(1− λ), (2)
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where lFOV is the length of the projected camera’s Field of
View (FOV), and λ ∈ [0, 1) is the desired overlap value.

States

A system state s ∈ S is defined as:

s = (pu, froi, fdct, pv, cv) (3)

where pu is the position of the UAV in the world coordinate
frame, fcrash is a flag raised when the UAV crashes with an
obstacle, froi is a flag indicating whether the UAV is flying
beyond the flying limits, fdct is the flag raised if a potential
victim is detected by the UAV. If fdct = True, the position
of the victim in the world coordinate frame is given in pv ,
with detection confidence cv ∈ [0, 1]. The system reaches a
terminal state whenever cv ≥ ζ, where ζ is the confidence
threshold.

Transition Function

The motion dynamics of a multi-rotor UAV defines the tran-
sition from current to new states:

pu(k + 1) = pu(k) + ∆pu(k) (4)

where pu(k) is the position of the UAV at time step k, and
∆pu(k) is the position change of the UAV between time
steps. This formulation does not contain any actions for
heading changes. However, Equation (4) can be expanded if
required by adding the rotation matrix in multi-copters [32].
An illustration of a problem formulation including the rota-
tion matrix can be found in [8].

Reward Function

The expected reward r after taking an action a ∈ A from state
s ∈ S is calculated using the reward function R(a, s) defined
in Algorithm 1 and Table 1. This function critically influences
the UAV behaviour during flight missions, and its definition
allows multi-objective task definition. A complete discussion
on the design considerations of the reward function can be
found in [26].

Table 1. Applied reward values to the reward function
R, defined in Algorithm 1.

Variable Value Description
rcrash −50 Cost of UAV crash
rout −25 Cost of UAV breaching safety limits
rdtc +25 Reward for detecting potential victim
rconf +50 Reward for confirmed victim detection
raction −2.5 Cost per action taken
rfov −5 Footprint overlapping cost

The order of the steps from Algorithm 1 classifies high-level
tasks into two components. The first one is object detection
and starts by evaluating any states which will negatively
affect the integrity of the UAV, followed by states indicating
positive victim detections. If the UAV detects a potential
victim (Step 6), R calculates a linear function (Step 8) which
returns increased reward values as the UAV gets closer to the
minimum allowed altitude. A higher reward value is returned
if a potential victim is confirmed (Step 9 and 10).

Algorithm 1 Reward function R for exploration and object
detection in outdoor environments.
1: r ← 0
2: if fcrash then
3: r ← rcrash ▷ UAV crashing cost
4: else if froi then
5: r ← rout ▷ Beyond safety limits cost
6: else if fdct then
7: r ← rdtc ▷ Detected object reward
8: r ← r +

[
rdtc ·

(
1− zu−zmin

zmax−zmin

)]
▷ UAV altitude

reward
9: if cv ≥ ζ and a = Down then
10: r ← r + rconf
11: end if
12: else
13: r ← raction ▷ Action cost
14: r ← r −

[
rdtc ·

(
1− zu−zmin

zmax−zmin

)]
▷ UAV altitude cost

15: r ← r −
[
rdtc ·

(
1− 0.5 4·dv/dw

)]
▷ Horizontal

distance cost
16: r ← r + rfov · ε ▷ Footprint overlap cost
17: end if
18: return r

The second component of the algorithm addresses explo-
ration. In case there are no detections, R applies a set of cost
functions to encourage a greedy horizontal exploration of the
environment. An exponential function in Step 14 calculates
the Manhattan distance between the UAV and the victim dv
and the maximum exploration distance dw which are defined
as follows:

dv =
∑n

i=1
|pi − qi|, pi=(xu, yu), qi=(xv, yv) (5)

dw =
∑n

i=1
|pi − qi|, pi=(xmax, ymax), qi=(xmin, ymin) (6)

The overlap ε between the camera’s current footprint and
its correspondent location in the footprint map is defined as
follows:

ε =

∑n
i=1 Fi(pu)

n
, ε ∈ [0, 1] (7)

where Fi(pu) are the pixel values of the projected FOV in the
footprint map, and n is the total number of projected pixels
in the footprint. A maximum overlap value of 1 indicates that
such action will place the UAV to a fully previously explored
area, and, as indicated in Step 16 of Algorithm 1, the whole
penalty value rfov will be added to the reward. A minimum
value of 0 means that a given action will place the UAV in an
unexplored area and no penalty will be added to the reward.
Intermediate values of ε represent partial overlapping, adding
a partial penalty value rfov to the reward.

Observations

An observation o ∈ O is defined as follows:

o = (opu , odtc, opv , oζ , oobs), (8)
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where opu
is the estimated position of the UAV by the au-

topilot; odtc is the flag triggered by potential victim detections
received by the CNN model; opv and oζ are the local position
of the victim and the detection confidence respectively, both
of them defined only if there are any positive detections; and
oobs is the flag triggered after processing the 3D occupancy
map for any obstacles located in front of the UAV.

The detection confidence oζ measures the frequency of posi-
tive detections between the last two observation calls:

oζ =

∑n
i=1 odtci

n
, (9)

where n is the number of segmented frames between obser-
vation calls, and odtc is the flag indicating a positive detection
per processed frame i.

Observation Model

This implementation uses Augmented Belief Trees (ABT) [33],
an online POMDP solver that contains a model that generates
T and Z using a modelled observation o given an action a
and the next state s′. The variables contained in the generative
model are the local position of the UAV s′pu

, the local position
of the victim s′pv

and the detection confidence oζ .

Potential victim detections and their subsequent positioning
estimations are conditioned by the camera pose at the UAV
frame and its projected footprint of the environment. Specif-
ically, if the 2D local position coordinates of the victim
s′pv

(x, y) are within the projected footprint limits of the
camera, the victim is assumed to be detected. This estimation
is done by calculating the sum of angles between a 2D
point (i.e., s′pv

) and each pair of points that constitute the
footprint boundaries (the footprint rectangular corners) [34].
The 2D projected footprint extent l of a vision-based sensor,
illustrated in Figure 5, can be calculated using Equations (10)
and (11):

ltop, bottom = s′pu
(z) · tan

(
α± tan−1

(
h

2f

))
, (10)

lleft, right = s′pu
(z) · tan

(
± tan−1

(
w

2f

))
, (11)

where s′pu
is the UAV altitude, α and β are the camera’s

pointing angles from the vertical z and horizontal x axis of
the World coordinate frame, w is the lens width, h is the lens
height, and f is the focal length.

The footprint corners c from the camera’s local coordinate
frame I are translated to the world’s coordinate frame W
using the following transformation:

[
c′(x)
c′(y)

]
=

[
s′pu

(x)
s′pu

(y)

]
+

[
cos(φu) − sin(φu)
sin(φu) cos(φu)

] [
c(x)
c(y)

]
,

(12)

where s′pu
is the next UAV position state, and φu is the Euler

Ground

Figure 5. Field of View (FOV) projection and footprint
extent of a vision-based sensor. The camera setup on the

UAV frame defines α as the pointing angle from the
vertical (or pitch) and determines the coordinates of the

footprint corners c.

yaw angle of the UAV. However, as no actions involve ad-
justing the heading of the UAV mid-flight, and assuming yaw
estimation errors are negligible, Equation (12) is simplified
as follows:

[
c′(x)
c′(y)

]
=

[
s′pu

(x) + c(x)
s′pu

(y) + c(y)

]
. (13)

The detection confidence oζ that comes as part of the output
data from the CNN object detector is modelled using Equa-
tion (14):

oζ =
(1− ζmin) (duv − zmin + ζmin)

zmax − zmin
, (14)

where ζmin is the minimally accepted confidence threshold,
zmax and zmin are the maximum and minimum UAV flying
altitudes respectively, and duv is the Manhattan distance
between the UAV and the victim.

4. EXPERIMENTS
This research validated the proposed UAV framework with
real flight tests on the sub 2 kg quadcopter shown in Section 2.
The tests were designed under a ground SAR application
context, specifically, to locate a lost person last seen around
a forest/bushland area. The subsections below present the
location of conducted flights, environment setup, proposed
flight modes for data collection and tuned hyperparameters
of the online POMDP solver.

Location and Environment Setup

Flight tests were conducted at the Samford Ecological Re-
search Facility (SERF), 148 Camp Mountain Road, Samford
QLD 4520, Australia. As shown in Figure 6, the 51 hectare
property contains protected Dry Sclerophyll forest and graz-
ing zones, where the latter ones were utilised to fly the UAV.

The delimited flying area covers a mostly flat grazing zone
featuring buffel grassland, a five-metre tree, and a car pur-
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(a)

(b)
Figure 6. Location of conducted flight tests at the

Samford Ecological Research Facility (SERF), QLD,
Australia. (a) SERF and surveyed area boundary extents
(orange and red blobs respectively). (b) Aerial footage of
surveyed area displaying buffel grassland and obstacles.

posely placed as an additional obstacle. Flight tests were con-
ducted between the 19th July 2021 and the 8th of September
2021, in a rich range of illumination and weather conditions.
Weather conditions included tests under clear and partly
cloudy skies, with calm and gusty winds from 6 km/h up to
24 km/h respectively. The range of recorded temperatures
ranged from 14◦C to 25◦C.

This implementation employed a static adult mannequin pos-
ing as the victim to be found for safety reasons. The man-
nequin was placed at two predefined locations, as depicted in
Figure 7. The first location— referred from here as Location
1, or L1—is a trivial setup with the mannequin free of any
nearby obstacles and entire visibility from downward-looking
cameras. The second location—referred from here as Loca-
tion 2, or L2—introduces a complex setup as the mannequin
is placed nearby a tree which causes partial occlusion during
the flight tests.

Flight Modes

The proposed UAV system is evaluated by collecting data
using three flight modes: mission, offboard, and hybrid. The

(a)

(b)
Figure 7. Adult mannequin placed in the surveyed area
as the victim to be found. (a) Trivial victim location (L1)
with the mannequin fully exposed in the environment.
(b) Complex victim location (L2) with the mannequin

partly occluded by a five-metre tree.

survey extent for these tests is delimited by a 6 m × 60 m
rectangular area, drafted in QGroundControl. Specific details
of the survey pattern can be found in Figure 15 and Table 4
from the Appendix. A diagram illustrating the functionality
of tested flight modes is shown in Figure 8.

Mission Mode—When mission mode is activated, the UAV au-
tomatically follows a list of position and velocity waypoints
which define the survey plan previously drafted in QGround-
Control and uploaded to the autopilot before starting the flight
operation. This flight mode is traditionally supported in many
autopilots, and its out-of-the-box implementation serves as
the planner baseline of this research. While mission mode is
operated in the UAV, the object detector is running in parallel
to record any positive detections while the UAV is navigating
in the environment and completing the survey.

Offboard mode—Offboard mode offers autonomous naviga-
tion without a predefined survey plan of the environment.

7
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Figure 8. Executed flight modes for exploration and object detection in outdoor environments. Mission mode is the
baseline motion planner and lets the UAV survey the SAR emulated area by following a lawnmower pattern. Offboard

mode runs the POMDP motion planner by populating an initial victim position belief across the entire flying area.
Hybrid mode extends the functionality of mission mode by running the POMDP motion planner to inspect the area

delimited by the camera’s FOV.

This flight mode internally executes the POMDP-based mo-
tion planner described in Section 3 by declaring as flight pa-
rameters the initial position waypoint where the UAV should
begin the survey, and the global coordinates of the survey
extents. The list of parameters can be found in Table 5 from
the Appendix.

Hybrid Mode—This paper proposes the fusion of the provided
capabilities between mission and offboard modes, in a flight
mode denominated hybrid. The aim of this flight mode is to
take advantage of the initial awareness and survey coverage
coming from mission mode in outdoor environments with
GNSS signal coverage, and the autonomous navigation ca-
pabilities of offboard mode. Instead of running the POMDP-
based motion planner covering the entire extent of the sur-
veyed area, in hybrid mode the survey extent is only limited
by the extent of the camera’s FOV. Once a first detection is
received from the vision module, this flight mode triggers
offboard mode, boots the motion planner and passes action
commands to the autopilot until the POMDP solver reaches
a terminal state (i.e.the UAV discards or confirms a victim).
Afterwards, the UAV resumes its survey by triggering back
mission mode. The process repeats itself with new detection
outputs until the UAV completes the survey in mission mode.

POMDP solver

The navigation problem modelled as a POMDP is solved in
real time through the use of the TAPIR toolkit [35]. TAPIR
is coded using the C++ programming language and encap-
sulates the Augmented Belief Trees (ABT) solver [33] to
calculate and update the motion policy online. ABT reduces
computational demands by reusing past computed policies
and updating the optimal policy if changes to the POMDP
model are detected. Furthermore, formulated problems with
ABT allow declaring continuous values for actions, states,
and observations.

Once the motion server calls the motion planner after a first
victim detection is received by the object detector, TAPIR
is booted by calculating an offline policy for four seconds.
Afterwards, the observation server retrieves an observation,

updates the motion policy and takes the action that returns
the highest expected reward. An idle period of 3.4 seconds is
applied for the UAV to reach the desired position coordinate,
and then, the process repeats itself by requesting a new
observation from the observation server. The loop is broken
once the detection confidence ζ exceeds a threshold. Specific
parameters from the TAPIR toolkit and ABT solver are shown
in Table 5 from the Appendix.

5. RESULTS AND DISCUSSION
The proposed UAV framework is evaluated through the per-
formance indicators listed as follows: 1) Successful detec-
tions per flight mode; 2) Spatial distribution of recorded
GNSS coordinates via heatmaps; 3) Elapsed time taken by
the UAV to locate the victim per location; and 4) Scalability
test using thermal imagery. Real flight demonstrations of the
UAV framework can be found at https://youtu.be/U_
9LbNXUwV0.

Accuracy metrics of victim detections were recorded using
three variables: True Positives (TP), False Positives (FP),
and False Negatives (FN). TP is defined here as the relative
number of flight runs where the victim was successfully
detected at the true location. FP is the relative number of
flights which recorded victim locations in other areas than
the true position of the victim. FN is the relative number
of flights that did not detect the victim at their real location.
In this context, a given flight test could report false positive
detections and still detect the victim at the real location. A
summary table of collected metrics is depicted in Table 2.

Accuracy metrics of the proposed framework provided con-
trasting results at the tested victim locations. On flight tests
with the victim placed in a trivial location (i.e., L1), the UAV
achieved 100% of positive victim detections in mission mode,
and 20% of those recorded GNSS coordinates of false victim
locations. For tests in offboard and hybrid flight modes,
the true positive rates decreased in comparison with mission
mode. However, both setups achieved flight tests without
any false positive readings. An illustration of the spatial
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Table 2. Accuracy metrics of the system to locate a
victim at two locations (L1 and L2). Here, TP are true

positives, FP are false positives, and FN are false
negatives.

Flight Mode Runs TP (%) FP (%) FN (%)
Mission (L1) 5 100.0 20.0 0.0

Offboard (L1) 7 57.1 0.0 42.9

Hybrid (L1) 5 80.0 0.0 20.0

Mission (L2) 5 60.0 0.0 40.0

Offboard (L2) 5 80.0 0.0 20.0

Hybrid (L2) 7 71.4 28.6 28.6

distribution of recorded GNSS coordinates per flight mode
for L1 is shown in Figure 10.

Flight tests with the mannequin located in a complex location
(i.e., L2) showed an overall improvement in TP rates for
offboard and hybrid modes compared to the baseline planner
(mission mode). For mission and offboard modes, there were
no flights which reported FP detections even though the flight
setup, payload, and object detector remained the same while
testing the framework with the mannequin located in L1.
Nevertheless, 28.6% of the flights in hybrid mode reported
false positive victim locations. The rate of false positives
for all the flight tests were caused by limitations from the
object detector by recording other objects as humans (i.e.,
from the car placed in the flight area). Conversely, most of
the false negative records during the flight tests occurred from
excessive vibration in the UAV frame caused by strong winds,
as shown in Figure 9.

A visual analysis of the spatial distribution of recorded
GNSS coordinates during the flight tests is performed using
heatmaps. The heatmaps, illustrated in Figures 10 and 11,
indicate a reduction in victim location uncertainty after oper-
ating the proposed UAV framework using offboard and hybrid
flight modes.

The presented POMDP-based motion planner from Sandino
et al.[18]—scaled in this work for UAV navigation in out-
door environments—contributed on the reduction of object
detection uncertainty in flight tests using offboard and hybrid
modes. An example of how the UAV inspects an area to
confirm whether a victim is truly located after receiving an
initial detection is shown in Figure 12. In the first time
steps (Figure 12a), a low confidence value of 19.51% is
retrieved because of the few number of pixels representing
the mannequin while surveying at 16 m, and partial occlusion
from the nearby tree. After taking actions commands from
the POMDP policy computed in the planner module, the UAV
is positioned closer to the mannequin (i.e., 10 m) and with a
better viewpoint of the scene, retrieving a confidence value of
90.0% (Figure 12b). The traversed path by the UAV also sug-
gests the capability of the UAV to adapt (or update) its motion
policy while it interacts with the environment and receives
new observations. Adjustments in the motion policy also
occur from uncertainty sources, such as unexpected strong
wind currents, oscillating GNSS signal errors, illumination
changes, and false detections by the CNN model.

This work also studied the speed of the proposed framework
to find victims using mission, offboard, and hybrid flight
modes. As presented in Table 3, two primary insights are

Figure 9. Strong winds distorting RGB streaming in
offboard mode. The top image illustrates the traversed
path of the UAV and the probability distribution of the

UAV and victim locations (orange and red points
respectively). The bottom image shows the latest

(distorted) streamed frame from the RGB camera.

observed in elapsed times between victim locations and flight
modes. The first observed trend defines higher values of
standard deviation (especially in offboard mode) in flight tests
with the victim at location L1. These values were caused by
slight inconsistencies in the traversed path from the motion
planner, as seen in Figure 13. From the surveyed area,
Location 1 is closer to the survey limits, whereas Location
2 is placed closed the upper centre. The motion planner lets
the UAV move towards the centre of the surveyed area before
exploring its corners. Despite test runs in offboard mode
providing higher overall accuracy values than tests in hybrid
mode, surveyed patterns could become suboptimal if a victim
is located close to the boundaries of the delimited flying area.

The second observed trend is that hybrid mode recorded
longer times for detecting and confirming the victim, regard-
less of its location in the surveyed area. This impact highly
depends on the recall properties of the vision-based object
detector. The number of false positive outputs while the UAV
explores the environment defines the number of inspections,
which will increase the flight time until the survey is com-
plete. Using other object detectors tuned from airborne UAV
datasets is expected to reduce the survey duration in hybrid
mode, as these models should provide higher recall values
than the MobileNet SSD detector implemented in this paper.

Limitations in the implemented object detector to output
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(a)

(b)

(c)
Figure 10. Heatmaps of recorded GNSS coordinates in a

trivial victim location (L1) using (a) mission, (b)
offboard, and (c) hybrid flight modes.

positive detections have conditioned the maximum altitude
for the surveys, and consequently, impacted the overall speed
of the system to complete the mission. Other restrictions
are defined by the gimbal configuration, which scopes the
footprint of the camera’s FOV, and the image resolution of
streamed frames. Therefore, reduced times to accomplish the

(a)

(b)

(c)
Figure 11. Heatmaps of recorded GNSS coordinates in a

complex victim location (L2) using (a) mission, (b)
offboard, and (c) hybrid flight modes.

victim finding mission can be accomplished by improvements
in the object detector, higher image resolution and oblique
camera angles that provide a wider viewpoint of the scene.
Nonetheless, such improvements might involve an increment
in computational power and further research should evaluate
any impacts from better detectors and processing of high-
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(a)

(b)
Figure 12. Reduction of object detection uncertainty

from RGB camera after executing the motion policy. (a)
Initial detection of a potential victim with a confidence

value of 19.51%. (b) Increased confidence value (90.0%)
at subsequent detections after the UAV executes actions
from the computed motion policy and gets closer to the

victim.

resolution frames in embedded systems such as the UP2.

The scalability test of the presented framework was achieved
with preliminary flight tests using thermal imagery. The
modular components replaced for this trial consisted of the
UAV payload, the vision-based detector, and the flight plan
generated by QGroundControl to match the desired overlap

Table 3. Elapsed time by the UAV to locate a victim at
two locations (L1 and L2) per flight mode. Here, SD

stands for Standard Deviation and SE stands for
Standard Error.

Flight Mode Mean (s) SD (s) SE (s)
Mission 169.67 – –

Offboard (L1) 146.24 128.70 64.35

Hybrid (L1) 392.39 130.20 65.10

Offboard (L2) 148.30 25.58 12.79

Hybrid (L2) 289.26 76.84 34.36

Figure 13. Example traversed path in offboard mode
while no victims are found. The UAV moves towards the
centre of the surveyed area before exploring its corners.

values previously tested with the RGB camera. The object
detector is a custom implementation of a TinyYoloV2 model
architecture from Microsoft Azure Custom Vision services.
A total of 5175 labelled images were used in the training
process. The thermal dataset contains images of adults with
a rich set of posing configurations: adults lying on the
ground and waving their arms; adults standing up waving
their arms; altitude and camera viewpoint variations from the
UAV, ranging from 5 to 40 m, and gimbal angles of 45◦ and
0◦ from Nadir.

Thermal preview tests were conducted between 5:30 a.m. and
7:30 a.m. from the 25th August 2021 to the 23rd September
2021, with ambient temperatures between 7◦C and 14◦C.
An overview of the system navigating in hybrid mode to
increase values of object detection confidence from streamed
thermal frames can be found in Figure 14. In this instance,
the UAV starts inspecting the area covered by the FOV of
the thermal camera (Figure 14a). In subsequent time steps,
the aircraft gets closer to have a better visual of the scene
and confirm the presence of the victim by retrieving higher
detection confidence values (Figure 14b). A demonstrative
preview video of flight operations with thermal imagery can
be found at https://youtu.be/yIPNBwNYtAo.
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(a)

(b)
Figure 14. Reduction of object detection uncertainty

from thermal camera after executing the motion policy.
(a) Initial detection of a potential victim with a

confidence value of 31.75%. (b) Increased confidence
value (83.33%) at subsequent detections after the UAV

gets closer to the victim.

The proposed UAV framework constitutes a novel approach
to autonomous navigation for exploration and target finding

under uncertainty. Real-world environments are full of uncer-
tainties such as illumination conditions, strong wind currents,
collision from static and dynamic obstacles, occlusion, and
limitations in object detectors, which can negatively affect the
success of the flight mission. While many approaches handle
object detection uncertainty by fine-tuning CNN models with
labelled airborne datasets [36], this research suggests aug-
menting the cognition power onboard UAVs from imperfect
sensor and detection output observations. Moreover, aug-
menting autonomy capabilities in small UAVs might open
more approaches to automated surveying in outdoor envi-
ronments by using a swarm of UAVs which will not require
permanent supervision by pilots to photo-interpret streamed
camera frames to identify and locate potential victims.

Several benefits can be offered through the use of the frame-
work in time-critical applications to SAR squads. A first
assessment of the accessibility conditions of the surveyed
environment, identification, localisation, quantification and
conditions of victims and external hazards might be obtained
rapidly thanks to real-time telemetry of processed camera
frames. After completing a flight, the list of GNSS co-
ordinates (depicted in Figures 10 and 11) can be shared
to SAR squads to coordinate better response strategies, as
well as launching additional UAVs for critical deployment of
medicines, food or water.

6. CONCLUSIONS
This paper discussed a modular UAV framework for au-
tonomous onboard navigation in outdoor environments under
uncertainty. The system showed how levels of object detec-
tion uncertainty were substantially reduced by calculating a
motion policy using an online POMDP solver and interacting
with the environment to obtain better visual representations
of potential detected targets. CNN-based computer vision
inference and motion planning can be executed in resource-
constrained hardware onboard small UAVs. The framework
design was validated with real flight tests with a simulated
SAR mission, which consisted in finding an adult mannequin
in an open area and close to a tree. Collected performance
indicators from three flight modes suggest that the system
reduces levels of object detection uncertainty in outdoor
environments whether information about the surveyed envi-
ronment is available. This framework was also extended by
adapting the payload with a thermal camera and converting
a customised people detector from thermal imagery in the
vision module.

The presented framework extends the contributions of [8, 26]
by; (1) extending their tested UAV framework in GNSS-
denied environments for outdoor missions with GNSS signal
coverage with a novel flight mode (i.e., hybrid mode); (2)
further validating preliminary results of the presented frame-
work using real flight tests; and (3) demonstrating scalability
opportunities of the modular framework design by adapting a
thermal camera and custom object detector to locate victims
using their heat signatures.

Future work should evaluate the performance of the UAV
system using tailored object detectors from different net-
work architectures than MobileNet SSD and high-resolution
streamed frames. Further assessments with multiple victims
and more complex environment configurations (e.g.slope ter-
rain, type and number of obstacles) are encouraged. A
comparison study of various online POMDP solvers, or other
motion planners, could improve understanding the limits

12
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Table 4. Flight plan parameters based on RGB camera
properties.

Property Value
UAV altitude 16 m
UAV velocity 2 m/s
Lens width 2.06 mm
Lens height 1.52 mm
Camera focal length 4.7 mm
Image resolution 640 by 480 px
Overlap 30%
Bottom right waypoint -27.3892746◦, 152.8730164◦

Top right waypoint -27.3887138◦, 152.8730164◦

Top left waypoint -27.3887138◦, 152.8727722◦

Bottom left waypoint -27.3892765◦, 152.8727722◦

of using the ABT solver and POMDP solvers for motion
planning under uncertainty.

APPENDIX
The survey design and flight plan parameters for conducted
tests in mission and hybrid flight modes are shown in Fig-
ure 15 and Table 4, respectively.

Figure 15. Flight plan following a lawnmower pattern
using the RGB camera properties from Table 4.

The set of hyper-parameters used in TAPIR and initial con-

ditions to operate the UAV using offboard and hybrid modes
are shown in Table 5.
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Chapter 7 

Autonomous Mapping of Desiccation 
Cracks via a Probabilistic-based Motion 
Planner Onboard UAVs 

UNDERSTANDING the history and potential liveable conditions in planets such as Mars have been 

of interest for researchers. The identifcation and localisation of desiccation cracks in ancient 

water bodies such as lakes, rivers, and seas are a possible source to investigate past life forms. Small 

UAVs play a key role in the identifcation and mapping of desiccation cracks, normally located in 

remote complex environments that are diffcult to identify with the naked eye. 

This chapter presents the complete scalability example of the UAV framework (established in 

paper 4, Chapter 6) validated with real fight tests using two desiccation crack patterns distributed 

across an open area. It is this ffth paper that demonstrates a novel CNN model for real-time image seg-

mentation of desiccation cracks, and a new payload to acquire RGB frames using an OAK-D camera. 

Experimental data indicates the autonomous decision-making UAV system has the capacity to detect 

and map desiccation cracks in the surveyed area. 
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Autonomous Mapping of Desiccation Cracks via a
Probabilistic-based Motion Planner Onboard UAVs

Juan Sandino, Julian Galvez-Serna, Nicolas Mandel, Fernando Vanegas and Felipe Gonzalez
QUT Centre for Robotics

Queensland University of Technology
2 George St, Brisbane City

QLD 4000, Australia
{j.sandino, galvezse, nicolas.mandel, f.vanegasalvarez, felipe.gonzalez}@qut.edu.au

Abstract—Studies of past life forms on other planets are pos-
sible through the identification and localisation of desiccation
cracks in ancient water bodies such as lakes, rivers and seas.
Unmanned aerial vehicles (UAVs) are increasingly being used as
a viable remote sensing solution for planetary exploration, as
desiccation cracks are difficult to identify with the naked eye
and are normally located in complex and unreachable environ-
ments. However, most UAVs have a strong reliance on human
operators through their communication systems, as UAVs have
limited onboard decision-making capabilities for autonomous
navigation in such environments. UAV navigation in real-world
scenarios is also challenging as data captured from their sen-
sors is imperfect, and outputs from computer vision systems
are, sometimes, inaccurate. These sensory and onboard vision
limitations cause partial observability of the state of surveyed
environments, inducing uncertainty in optimal path planning.
This paper proposes a UAV system for autonomous onboard
navigation, identification, and mapping of desiccation cracks
for planetary exploration. The navigation problem is mathe-
matically formulated as a partially observable Markov decision
process (POMDP), where a motion strategy can be obtained by
solving the POMDP in real time using the augmented belief tree
(ABT) solver. The framework discussed in this work is vali-
dated with real flight tests using two desiccation crack patterns
distributed across the surveyed area. Real-time segmentation
from streamed camera frames of desiccation cracks is achieved
through inference onboard the aircraft using a ResNet18 Con-
volutional Neural Network (CNN) model, and an OpenCV AI
Kit (OAK)-D camera. Results from real flight tests indicate that
the system can reduce levels of object detection uncertainty to
locate and map desiccation cracks in environments under partial
observability. The system design allows further adaptation for
similar time-critical applications requiring increased levels of
UAV autonomy in unstructured environments under uncertainty
and partial observability, such as humanitarian relief, wildlife
monitoring, and surveillance.

TABLE OF CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. FRAMEWORK DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. POMDP MOTION PLANNER DESIGN . . . . . . . . . . . . . . . 4
4. EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5. RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

978-1-6654-3760-8/22/$31.00 ©2022 IEEE

1. INTRODUCTION
Recent efforts in planetary exploration are focused on finding
environments that suggest the presence of past or present life
forms. These traces of life forms are denominated biosigna-
tures. Literature suggests that some biosignatures are likely
to be found in environments with the past or present presence
of water, as they allow organisms to grow and be preserved
in rock records (or fossils) [1]. An increasingly popular type
of sedimentary structure is the inspection of mud cracks (or
desiccation cracks) from past aquatic environments such as
dry lake beds. Environments on Earth with some present
biosignature indicators are located in Pilbara, WA, Australia.
An illustration of biosignature fossils and desiccation cracks
is shown in Figure 1.

(a)

(b)
Figure 1. Environments with indicators of water-related

life signatures (or biosignatures). (a) Ancient conical
stromatolite fossils at Pilbara, WA, Australia. (b)

Desiccation crack formation that may contain
biosignatures.

1
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Advances in unmanned aerial vehicle (UAV) technology for
civilian applications have resulted in their gradual adop-
tion in fields such as biosecurity, search and rescue (SAR),
and wildlife monitoring [2–6]. Popularity of UAVs is also
increasing in applications for planetary exploration, owing
to their extensive payload adaptability, autonomous flying
control capabilities, and flexibility to explore challenging
and otherwise inaccessible environments. A recent case
study is, for instance, the successful deployment and remote
operation of the National Aeronautics and Space Adminis-
tration (NASA) Ingenuity helicopter [7] on Mars for pho-
togrammetry [8, 9]. Furthermore, the development and use
of DragonFly—a UAV deployed to survey Saturn’s moon
Titan—shows new opportunities to expand the use of UAVs
in a new set of planetary exploration applications [10, 11].

One of the ever-present challenges in autonomous UAV
navigation for real-world and planetary exploration missions
is dealing with uncertainty. Sources of uncertainty come
from external and internal factors that could compromise the
behaviour of UAVs and the flight mission itself [12]. Some
external factors include strong wind currents, solar radiation,
unknown environmental conditions, and partial observability.
Internal factors include noisy camera frames during stream-
ing, suboptimal camera settings and calibration, low image
resolution, and imperfect detection outputs from computer
vision detectors. These factors cause partial observability
of the actual state of the surveyed environment, targets of
interest, or the UAV itself, which increases the decision-
making complexity to undertake optimal sequences of ac-
tions and accomplish the mission. It is essential, therefore,
that UAVs should incorporate cognitive capabilities for au-
tonomous navigation in challenging planetary environments
such as Mars, Titan, and Venus [13].

Literature on applied decision-making theory in UAVs is
extensive and suggests that the mathematical modelling of
navigation problems using partially observable Markov deci-
sion processes (POMDPs) can increase cognitive capabilities
of UAVs in environments under uncertainty [14–16]. UAV
frameworks for object detection and tracking have been tested
in cluttered indoor environments and in the absence of global
navigation satellite system (GNSS) coverage [6, 17–19].
Moreover, POMDPs have also been applied to solve multi-
objective problems in UAVs, capable of addressing tasks such
as path planning, multiple object detection and tracking, and
collision prevention [20, 21].

Research works on applied decision-making theory for plan-
etary exploration, and specifically, for the detection and
mapping of desiccation cracks, are scarce. Recent advances
in platforms such as Ingenuity have contributed to algorithms
for flight control and vision-based navigation using feature
detectors and data fusion [22]. However, the UAV uses
a vision-based navigation algorithm limited to follow po-
sition waypoints from a pre-defined flight plan transmitted
from Earth. Another significant contribution discussed a
collaborative robotics approach for path planning on Mars
in simulation, where aerial footage from the UAV could
reduce localisation uncertainty in a ground robot for optimal
navigation [23].

This paper presents a UAV framework and motion planner
for autonomous navigation in planetary exploration environ-
ments. The UAV system is evaluated with a case study of
biosignatures search through the localisation, segmentation
and mapping of desiccation cracks. This work discusses the
design and implementation of a novel flight mode that aug-

ments the capabilities of traditional mission surveys in small
UAVs. The flight mode inspects dedicated areas to reduce
levels of object detection and segmentation uncertainty with
the execution of an online POMDP solver that calculates
a motion policy in challenging environments. This policy
allows the UAV to interact with the environment and obtain
improved visualisations of potential detected objects.

This investigation extends the work of Sandino et al. [6, 24,
25] with the following novel contributions; (1) an extension
and scalability study of their UAV framework tested in an
application beyond the scope of SAR operations; (2) ad-
ditional validations of their framework from simulation by
executing real flight tests; and (3) an evaluation of scalability
capabilities by adapting a different payload (an OpenCV AI
Kit (OAK)-D camera), and a custom ResNet18 Convolutional
Neural Network (CNN) model for detection and mapping of
desiccation cracks into the existing framework design;

The rest of the manuscript is structured as follows: Section 2
details the design of the UAV framework for autonomous
detection and mapping of desiccation cracks; Section 3 pro-
vides an overview of the probabilistic-based motion planner
using a POMDP; The design of conducted experiments using
real flight tests is presented in Section 4; Obtained results
and discussion of performance indicators are provided in
Section 5; In Section 6, conclusions and future avenues for
research are discussed.

2. FRAMEWORK DESIGN
This implementation uses a modular framework design appli-
cable for sub 2 kg UAVs. The components of this architecture
are adapted from a tested framework design by Sandino
et al. [19]. The original study validated the framework in
cluttered environments, absent from GNSS signal and with a
case study of SAR. In contrast, the design proposed in this pa-
per extends the scope of that framework implementation with
a novel application of autonomous navigation and mapping
of desiccation cracks for planetary exploration. A high-level
concept of the framework architecture is shown in Figure 2.

The proposed framework design allocates key components as
modules, where the Vision and Planner modules run onboard
a companion computer, and the low-level flight controller
and associated drivers in an autopilot. Starting from the
physical UAV frame, raw camera frames of the environment
(which may contain areas of potential desiccation cracks)
are captured with a vision-based sensor (i.e., an OAK-D
camera). Streamed frames—also called observations—are
visual representations of the environment and are processed
in the Vision module. The Vision module contains a CNN-
based semantics detector which processes input frames and
returns segmentation outputs. Computational load in the
computer while performing CNN model inference onboard
the UAV is allocated to a Vision Processing Unit (VPU).

Collected observations from the Vision module and the au-
topilot data (e.g., local and global position estimations of the
UAV) are parsed into the Observation Server at the Planner
module. This server is iteratively called by the POMDP-
based planner while estimating and updating a motion policy
mid-flight. Action commands returned by the planner are
received by the Motion Server, which interfaces with the
flight controller of the autopilot. The discussion below covers
in detail each one of the components of the UAV framework.
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Figure 2. Framework architecture for autonomous navigation onboard unmanned aerial vehicles (UAVs) in uncertain
outdoor environments. The design allocates key components as modules. The Vision and Planner modules run onboard

a companion computer, and the flight controller and associated drivers in an autopilot.

UAV and Sensors

This research converged on conducting the flight tests using
a Holybro X500 quadrotor kit (Holybro, China)—depicted
in Figure 3—as it offers the best combination among cus-
tomisation of mounted payloads, weight, size, and endurance.
Essential components added to the frame include a Pixhawk
4 GNSS receiver, a Pixhawk 4 autopilot, and a 433 MHz
telemetry radio. Four-cell 5000 mAh LiPo batteries are
used to power the aircraft and achieve an approximate flight
autonomy of 12 minutes, for an overall weight of 1.92 kg.

1

3
2

4

5

Figure 3. Sub 2 kg UAV framework implementation for
autonomous detection and mapping of desiccation

cracks. The UAV is composed of: 1) a Holybro X500
drone kit; 2) a Pixhawk 4 GNSS receiver; 3) an Intel UP2

as companion computer; 4) a Pixhawk 4 autopilot; and 5)
an OpenCV AI Kit (OAK)-D sensor.

The vision-based payload is an OAK-D camera, which has an
in-built red, green, blue (RGB) sensor, and two high-speed
monochrome sensors to offer depth data (through internal

image processing). The camera is mounted to an anti-
vibration mount and positioned down-facing and in parallel
to Earth’s nadir, as depicted in Figure 4. Core properties of
these sensors can be found in Table 3 of the paper’s Appendix.

Figure 4. OAK-D camera mounted to an anti-vibration
mount, down-facing and in parallel to Earth’s nadir.

Computational resources to execute the POMDP-based plan-
ner and computer vision are allocated to an Intel UP2 onboard
the small UAV. This companion computer features an Intel
64-bit quad-core CPU at 1.1 GHz, 8 GB DDR3 RAM, 64 GB
eMMC SSD, four FL110 USB 3.0 connectors, and two High-
Speed UART controllers.

Semantic Segmentation Model

Semantic segmentation is performed onboard the UAV us-
ing a custom implementation of a ResNet18 CNN architec-
ture [26, 27]. Segmentation is chosen over detection in this
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application as it allows fine-grained pixel-level information,
which is essential for mapping. In this implementation,
the network receives RGB image frames with a resolution
of 192 × 256 pixels, and returns single-channel segmented
frames of 96 × 128 pixels. Further details about the model
architecture, image datasets, labelling and training procedure
and evaluations can be found in [28]. Figure 5 shows an
example image of the detector during the experiments, with
regions depicted in red indicating the detected desiccation
crack.

(a)

(b)
Figure 5. Inference preview of ResNet18 CNN model for

real-time semantic segmentation of desiccation
cracks [28]. (a) Retrieved (i.e., raw) OAK-D camera

frame. (b) Output frame of segmented desiccation cracks
(in red) and other classes (in black).

The tuned CNN model is loaded into an Intel® Movidius™

Myriad™ X VPU, embedded in the OAK-D camera for real-
time inference onboard the UAV. This portability process
required the use of the Intel OpenVINO toolkit to convert and
optimise the CNN model into code instructions compatible
with the VPU. The Vision module is programmed using
the Python programming language, and the DepthAI and
OpenCV libraries [29]. With the model loaded in the VPU
and connected to the UP2 via USB 3.0, the system achieves
up to 24 frames per second (FPS) of instantaneous semantic
segmentation.

Communication Interface

The UAV framework runs using open-source software tools.
The companion computer runs Linux Ubuntu 18.04 LTS and
the robot operating system (ROS), melodic version. ROS
is a middleware to communicate between the nodes of each
module (following the architecture design from Figure 2).
The Pixhawk 4 autopilot is powered by the PX4 firmware
and communicates with the companion computer through
MAVROS via UART. MAVROS is a ROS implementation of
the MAVLink protocol, which is industry standard for UAV
communication and control [30].

3. POMDP MOTION PLANNER DESIGN
The POMDP-based planner translates UAV position com-
mands derived from environment observations. The discus-
sion presented in this section is heavily based on the problem
formulation of UAV navigation under object detection uncer-
tainty from Sandino et al. [24], and only essential and adapted
components to detect and map desiccation cracks are shown
below for completeness.

A POMDP [31] is a tuple ⟨A,S, T,O,Z, R, b0, γ⟩, where
A,S,O are a finite set of UAV actions, states, and observa-
tions respectively. Whenever the UAV (also known as the
agent in POMDP theory) takes an action a ∈ A from a state
s ∈ S, the transition probability to a new state s′ ∈ S is
defined by a transition function T (s, a, s′) = P(s′ | s, a).

With a taken action a ∈ A, the UAV receives an observation
o ∈ O encoded by the observation function Z(s′, a, o) =
P (o | s′, a). Every decision chain is then quantified with
a reward r, calculated using the reward function R(a, s).
Taking into account that collected data by the UAV sensors
and vision systems is imperfect, partial observability about
the state of the environment, the UAV itself and objects of
interest is always present in real-world applications. As
a result, a POMDP uses probability distributions over the
system states to model uncertainty of its observed states.
This modelling is denominated the belief b(H) = P[s1 |
H], · · · ,P[sn | H], where H is the history of actions,
observations and rewards the UAV has accumulated until a
time step t, or H = a0, o1, r1, · · · , at−1, ot, rt.

The motion policy π of the UAV is represented by mapping
belief states to actions π : b → A. A POMDP is solved after
finding the optimal policy π∗, calculated as follows:

π∗ := argmax
π

(
E

[ ∞∑

t=0

γtR (St, π (bt))

])
, (1)

where γ ∈ [0, 1] is the discount factor and defines the relative
importance of immediate rewards compared to long-term re-
wards. A given POMDP solver starts planning from an initial
belief b0, which is usually defined from the initial conditions
(and assumptions) of the flight mission using probabilistic
distributions.

Assumptions

The formulated problem for exploration and object segmen-
tation (i.e., mapping of desiccation cracks) using multi-rotor
UAVs assumes:

• Observations come from segmented camera frames (from
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the Vision module), and the estimated local UAV position
(from the autopilot).
• Only a single desiccation crack can be detected at the same
time. If more crack blobs are detected and depicted, the
biggest blob will be chosen, and the rest are discarded.
• The position coordinate of a desiccation crack is defined by
calculating the centroid of its segmented blob.
• The navigation task assumes the UAV is positioned at a
known position setpoint inside the flight survey.
• The task finishes computing a motion policy once: 1)
the UAV detects a crack blob whose detection confidence
surpasses a set threshold; 2) the UAV explores the whole
search area extent without finding any crack patterns; or 3)
the UAV exceeds the maximum flight time on air (because of
low levels of battery power).

Actions

The finite set of actions are defined by seven UAV position
commands, namely forward, backward, left, right, up, down,
and hover. UAV actions that are not included in the action
space but are managed by the autopilot instead include, but
are not limited to, arm, disarm, take-off, return to launch and
land. Each action updates the position set point of the UAV
in the world coordinate frame by calculating and applying a
change of position δ.

The magnitude for δx and δy depends on the estimated
overlap value between camera frame observations, calculated
using Equation (2):

δ = l(1− λ), (2)

where l is the projected length of the camera’s Field of View
(FOV), and λ ∈ [0, 1) is the desired overlap.

States

A system state s ∈ S is defined as:

s = (pu, froi, fdct, pc, cc) (3)

where pu is the position of the UAV in the world coordinate
frame, froi is a flag indicating whether the UAV flying beyond
the flying limits, fdct is the flag raised if a potential desicca-
tion crack is detected. If fdct = True, the position of the
crack blob in the world coordinate frame is given in pc, with
cc ∈ [0, 1] providing the corresponding detection confidence.
The system reaches a terminal state whenever cc ≥ ζ, where
ζ is the confidence threshold.

Transition Function

The motion dynamics of a multi-rotor UAV defines the tran-
sition from current to new states:

pu(k + 1) = pu(k) + ∆pu(k) (4)

where pu(k) is the position of the UAV at time step k; and
∆pu(k) is the position change of the UAV between time
steps. This formulation does not contain any actions for
heading changes. However, Equation (4) can be expanded if
required by adding the rotation matrix in multi-copters [32].
An illustration of a problem formulation including the rota-
tion matrix can be found in [6].

Reward Function

The expected reward r after taking an action a ∈ A from
state s ∈ S is calculated using the reward function R(a, s)
defined in Algorithm 1 and Table 1. This function critically
influences the UAV behaviour during flight missions, and
its definition allows multi-objective task definition. A grid
search technique was applied for a few initial iterations of the
system in simulation to obtain the applied reward values of
Table 1. Complete details on the design considerations of the
reward function can be found in [24].

Algorithm 1 Reward function R for exploration and inspec-
tion of desiccation cracks.
1: r ← 0
2: if fcrash then
3: r ← rcrash ▷ UAV crashing cost
4: else if froi then
5: r ← rout ▷ Beyond safety limits cost
6: else if fdct then
7: r ← rdtc ▷ Detected object reward
8: r ← r +

[
rdtc ·

(
1− zu−zmin

zmax−zmin

)]
▷ UAV altitude

reward
9: if cc ≥ ζ and a = Down then
10: r ← r + rconf
11: end if
12: else
13: r ← raction ▷ Action cost
14: r ← r −

[
rdtc ·

(
1− zu−zmin

zmax−zmin

)]
▷ UAV altitude cost

15: r ← r −
[
rdtc ·

(
1− 0.5 4·dv/dw

)]
▷ Horizontal

distance cost
16: r ← r + rfov · ε ▷ Footprint overlap cost
17: end if
18: return r

Table 1. Applied reward values to the reward function
R, defined in Algorithm 1.

Variable Value Description
rout −25 Cost of UAV breaching safety limits
rdtc +25 Reward for detecting potential crack
rconf +50 Reward for confirmed crack
raction −2.5 Cost per action taken
rfov −5 Footprint overlapping cost

Observations

An observation o ∈ O is defined as follows:

o = (opu
, odtc, opc

, oζ), (5)

where opu
is the estimated position of the UAV by the

autopilot; odtc is the flag triggered by potential segmentations
of desiccation cracks received by the CNN model; opc

is
the local position of the crack blob; and oζ is the detection
confidence. As segmented desiccation cracks are defined by
irregular shapes, opc

is estimated by calculating the centroid
of the blob’s bounding rectangle box.

The detection confidence oζ measures the frequency of posi-
tive detections between the last two observation calls:
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oζ =

∑n
i=1 odtci

n
, (6)

where n is the number of segmented frames between obser-
vation calls, and odtc is the flag indicating a positive detection
per processed frame i.

Observation Model

This implementation uses augmented belief trees (ABT) [33],
an online POMDP solver that contains a model that generates
T andZ using a modelled observation o given an action a and
the next state s′. The variables contained in the generative
model are the position of the UAV s′pu

, the centroid of the
desiccation crack segment s′pc

and the detection confidence
oζ .

Potential detections of desiccation cracks and their position
belief estimations are determined by the position of the
camera and its projected FOV. This implementation assumes
that a desiccation crack might be detected if any projected
two-dimensional (2D) position coordinates s′pc

(x, y) are con-
tained within the camera’s FOV. The 2D projected extent l of
a vision-based sensor can be calculated using Equations (7)
and (8):

ltop, bottom = s′pu
(z) · tan

(
α± tan−1

(
h

2f

))
, (7)

lleft, right = s′pu
(z) · tan

(
± tan−1

(
w

2f

))
, (8)

where s′pu
(z) is the altitude of the UAV, α and β are the

camera’s pointing angles from the vertical z and horizontal
x axis of the World coordinate frame, w is the lens width, h
is the lens height, and f is the focal length.

The footprint corners c from the camera’s local coordinate
frame I are translated to the world’s coordinate frame W
using the following transformation:

[
c′(x)
c′(y)

]
=

[
s′pu

(x) + c(x)
s′pu

(y) + c(y)

]
. (9)

The detection confidence oζ is modelled using Equation (10):

oζ =
(1− ζmin) (duc − zmin + ζmin)

zmax − zmin
, (10)

where ζmin is the minimally accepted confidence threshold;
zmax and zmin are the maximum and minimum UAV flying
altitudes respectively; and duc is the Manhattan distance
between the UAV and the desiccation crack.

4. EXPERIMENTS
This work evaluated the UAV framework design presented
in Section 2 using a sub 2 kg quadcopter in an emulated
planetary exploration environment. The experiments aim
to compare the performance of the POMDP-based planner

(discussed in Section 3) with a baseline motion planner to
record global coordinates and maps of desiccation cracks.
The following subsections describe the environment setup,
the tested flight modes for data acquisition and analysis, and
the implemented POMDP-based motion solver.

Environment Setup

Field experiments were conducted at the Samford Ecological
Research Facility (SERF), Samford Village, QLD, Australia.
The property contains a mostly flat area utilised to emulate
a space exploration environment. Two desiccation cracks
textures were placed across a 50 m × 50 m surveyed area.
The performance of the detector was further tested by placing
obstacles including a car, a tree, and a chair, as illustrated in
Figure 6.

Flight Modes

The UAV navigation and mapping tasks are evaluated using
two flight modes at flight altitudes of 10 m and 20 m.
The first mode—denominated mission mode from hereon—
is an automatic flight mode provided by the PX4 firmware,
which controls the motion of the UAV by following a series
of position setpoints. These setpoints are global position
coordinates that, when combined, shape a survey pattern.
The pattern follows a lawnmower pattern which lets the UAV
survey the flying area extent at a constant altitude. The
space between transects is defined by the desired overlap
between OAK-D camera frames. Specific details of the
survey pattern can be found in Table 3 of the Appendix. An
example lawnmower-pattern survey for a constant altitude of
10 m is illustrated in Figure 7. When the UAV operates in
mission mode, the semantics detector runs onboard to record
any desiccation crack blobs while the UAV is surveying the
emulated planetary environment. This mode serves as the
baseline motion planner of this research because of its out-
of-the-box implementation provided for many UAVs.

The probabilistic-based motion planner proposed in this pa-
per runs onboard the UAV through a novel flight mode design.
This flight mode—denominated hybrid mode from hereon—
extends the functionality of mission mode by incorporating
autonomous inspection of potential zones with desiccation
cracks. In hybrid mode, the POMDP planner starts inspect-
ing a zone after a first crack detection is triggered by the
semantics detector. As shown in Figure 8, the inspection is
limited to the extent of the camera’s FOV, where the planner
calculates a motion policy to confirm or discard the presence
of desiccation cracks. Once the planner reaches a terminal
state (i.e., the UAV discards or confirms a desiccation crack),
the UAV resumes its survey in mission mode. The process
repeats for future detections until the UAV completes the
survey mission.

POMDP solver

The companion computer calculates an approximate solution
of the POMDP-based navigation problem by using the TAPIR
toolkit [34]. This toolkit contains an implementation of
the ABT solver programmed in C++. A ROS node was
developed to integrate the solver into the proposed framework
and transport action messages to the motion server.

For every solver call in hybrid flight mode, TAPIR calculates
an initial motion policy for four seconds. An observation
is then retrieved to update the motion policy and select the
action command that provides the highest expected accumu-
lated reward. Once the node sends the action message to the
Motion Server (and subsequently to the autopilot), the solver
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(a)

(b)

(c)
Figure 6. Test setup at the Samford Ecological Research

Facility (SERF), Australia. (a) Boundary extents of
SERF (orange) and flight area (red). (b) Test area

composed of desiccation crack textures, and obstacles
such as trees, chairs, and cars. (c) Printed textures of

desiccation cracks.

applies an idle time of 3.4 seconds to wait for the UAV to
reach the desired position. The process repeats by collecting
a new observation, updating the policy and selecting the next
action command until the planner reaches a terminal state.
Further details about the solver implementation can be found
in [24].

5. RESULTS AND DISCUSSION
The proposed UAV framework for autonomous detection and
mapping of desiccation cracks is tested using the following
indicators: 1) heatmaps of spatial distribution of recorded
GNSS coordinates of crack textures; 2) accuracy metrics

Figure 7. Drafted flight plan in QGroundControl
following a lawnmower pattern using the OAK-D camera

properties from Table 3.

Figure 8. Executed flight modes for detection and
mapping of desiccation cracks. Mission mode is the
baseline motion planner and lets the UAV survey the

emulated area following a lawnmower pattern. Hybrid
mode extends the functionality of mission mode by

running the POMDP-based planner to inspect the area
for potential desiccation cracks.

of the UAV framework in mission and hybrid flight modes;
3) speed analysis of the proposed UAV system in hybrid
mode to locate desiccation cracks at 10 and 20 m; and 4)
comparison of compiled Quadtree maps of segmented crack
textures between mission and hybrid flight modes. A real
flight video demonstration of this framework implementation
can be found at https://youtu.be/2Voal0T-RWw.

Visualisation of data noise and spatial distribution of col-
lected GNSS coordinates between mission and hybrid flight
modes is assessed using heatmaps. As depicted in Figures 9
and 10, the heatmaps suggest a strong noise reduction and
improved accuracy to locate desiccation crack textures while
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the UAV operates in hybrid mode.

(a)

(b)
Figure 9. Comparison of recorded GNSS coordinates of
desiccation cracks for UAV surveys at 10 m above ground
level (AGL). The blue dots represent the actual location

of the crack textures. (a) Heatmap of recorded detections
in mission mode. (b) Heatmap of recorded detections in

hybrid mode.

The proposed POMDP-based planner—adapted from Sandino
et al. [19]—for semantic object segmentation and outdoor
UAV navigation, reduces levels of detection uncertainty in
flight tests using hybrid mode. By using hybrid mode, the
UAV gains cognitive power to autonomously inspect areas
that may contain desiccation cracks. As CNN-based detectors
are not exempt from providing false positive readings of de-
tected objects, this implementation provides higher flexibility
to the UAV to interact with the environment and confirm or
discard the presence of desiccation cracks. A case study of
the UAV inspecting an area with a present crack texture is
shown in Figure 11.

In the event of a positive detection of an existing desiccation

(a)

(b)
Figure 10. Comparison of recorded GNSS coordinates of

desiccation cracks for UAV surveys at 20 m AGL. The
blue dots represent the actual location of the crack

textures. (a) Heatmap of recorded detections in mission
mode. (b) Heatmap of recorded detections in hybrid

mode.

crack within the camera’s FOV, the POMDP-based planner
computes an initial motion policy and arranges the proba-
bilistic distribution belief of the texture location based on the
initial collected observation (Figure 11a). As the detection
confidence at the beginning of the inspection is usually low
(i.e., 7.0%), the UAV will interact with the environment based
on the motion policy by the POMDP planner. After a series
of sequential actions, the UAV has a better visualisation of the
desiccation crack texture by approaching it until achieving a
detection confidence of 100% (Figure 11b). Adjustments in
the motion policy could occur from unexpected strong wind
currents, GNSS signal errors, false detections by the CNN
model, and illumination changes.
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(a)

(b)
Figure 11. Traversed path by the UAV in hybrid mode to

inspect an area with a potential desiccation crack. The
images at the top represent the input (right) and
processed frames (left). Blue arrows indicate the

orientation of sequential actions taken by the aircraft. (a)
Initial probability distribution of the crack localisation

(red dots), with a detection confidence of 7.0%. (b)
Traversed path after the UAV interacts with the

environment, achieving a detection confidence of 100%

(a)

(b)
Figure 12. Traversed path by the UAV in hybrid mode to

inspect an area from a false positive detection. The
images at the top represent the input (right) and
processed frames (left). Blue arrows indicate the

orientation of sequential actions taken by the aircraft. (a)
Initial probability distribution of the crack localisation

(red dots), covering the camera’s field of view (FOV). (b)
Traversed path after the UAV interacts with the

environment without any subsequent crack detections.
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A case study of the UAV inspecting an area in the absence
of a desiccation crack, a potential false positive, is depicted
in Figure 12. When the inspection task is triggered by a false
positive detection of a desiccation crack, the proposed motion
planner performs a horizontal assessment of the area covered
by the camera’s FOV (Figure 12a). If no further detections of
crack textures are triggered by the CNN model, the planner
will filter out any position particles that are contained inside
the camera’s FOV. Once all the position belief particles are
filtered, the motion planner reaches a terminal state, and the
inspected area is assumed as empty of desiccation cracks
(Figure 12b). If a subsequent detection is received by the
CNN model while filtering particles, the motion planner will
repopulate the particle belief as displayed in Figure 11a.

Detailed accuracy statistics of the proposed UAV system be-
tween hybrid and mission flight modes are shown in Table 2.
Performance metrics are composed of: True Positive (TP)
detections for Texture 1 (T1) and Texture 2 (T2); number
of instances per flight with Confirmed False Positives (x̄
CFP); and number per flight with Discarded False Positives
(x̄ DFP).

A total of 25 flights were completed at altitudes of 10 m
and 20 m. Overall, both mission and hybrid modes reported
an equivalent number of flights with confirmed detections,
with a slight increase of successful flights in hybrid mode
to confirm Texture 2 at 10 m. Nevertheless, every flight
survey in mission mode recorded an average of 177 and 72
instances of confirmed false positive detections at 10 m and
20 m, respectively. In contrast, UAV surveys in hybrid mode
reported on average 0.2 and null instances of confirmed false
positives per flight. An average of 1.0 instances of false
positive detections were subsequently discarded by the UAV
in hybrid mode at 10 m and 0.38 instances at 20 m.

The average number of instances with discarded false positive
detections in hybrid mode resulted in an impact in the overall
duration of the surveys. As shown in Figure 13, survey
times of flights at 20 m were shorter, but tiny crack patterns
are more likely to be missed compared to surveys at 10 m.
Recall improvements in the semantic segmentation model are
encouraged to ensure small crack blobs can also be detected
for future survey operations at 20 m.

200 300 400 500

Hybrid (10 m)

Hybrid (20 m)

Survey duration (s)

Figure 13. Comparison of elapsed time of the UAV in
hybrid mode to complete the survey at 10 m and 20 m.

The UAV framework and proposed hybrid flight mode also
provide improved compilation of Quadtree maps [35]—or
quadmaps—of segmented crack textures. As quadmaps re-
quire input point cloud data for their generation and update
process, Figure 14 shows the projection of the semantic
segmentation model onto the ground plane. The density of
the point cloud indicates the resolution at which a map is
being created. Segmentations at a lower height generate finer
resolution observations and are inserted in a finer resolution
into the quadmap.

Raw Frame

Processed Frame Point Cloud Visualisation

(a)

Raw Frame

Processed Frame Point Cloud Visualisation

(b)

Raw Frame

Processed Frame Point Cloud Visualisation

(c)
Figure 14. Level of granularity of projected processed

frames into a point cloud for mapping. (a) UAV
segmenting a desiccation crack contour at 25 m. (b) UAV
segmenting a desiccation crack contour at 15 m. (c) UAV

segmenting a desiccation crack contour at 5 m.

Higher levels of map granularity can be achieved with flights
in hybrid mode. Figure 15 exemplifies two quadmaps gen-
erated by capturing outputs from the CNN model with a
frequency of 8 Hz. By creating an initial quadmap from an
altitude of 20 m for both flight modes, the final resolution of
the quadmap in mission mode (bottom map from Figure 15)
is much coarser than the one in hybrid mode, as observations
for the mission were generated at a constant altitude of 20 m.
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Table 2. Accuracy metrics of the proposed framework in mission and hybrid flight modes. Metrics are composed of:
number of flights with True Positive (TP) detections for Texture 1 (T1) and Texture 2 (T2); number of instances per
flight with Confirmed False Positives (x̄ CFP); and number of instances per flight with Discarded False Positives (x̄

DFP).

Mode Flights TP (T1) TP (T2) x̄ CFP x̄ DFP
Mission (10 m) 7 3 3 177.0 —
Hybrid (10 m) 5 3 4 0.2 1.0
Mission (20 m) 6 6 0 72.0 —
Hybrid (20 m) 7 7 0 0.0 0.38

Figure 15. Level of granularity in a Quadtree map of a
segmented crack texture in hybrid (top) and mission

(bottom) flight modes. Red map cells indicate the
presence of desiccation cracks. The intensity of red pixels
is an indicator of the confidence of the map reproduction.

Furthermore, the map also shows less continuity in the area
of the texture, which hints that noise corrupted the correct
observation of the uniform texture area.

In continuity terms, the hybrid quadmap is sufficiently con-
tinuous, except for the boundary areas, suggesting that flights
in hybrid mode could approach the texture and map it more
accurately in the presence of noise. Using the UAV in hybrid
mode to inspect the area for potential desiccation cracks
resulted in a finer quadmap resolution. The smaller map cells
show that observations were generated at a closer distance.
However, the fact that the map cells are present in such
a fine resolution demonstrates that they are not considered
equal and cannot be pruned into summarising elements. This
indicates that noise is present and the map is not equally
confident about all children, maintaining the children at a fine
enough resolution to distinguish differences.

Limitations in the semantics segmentation model to detect
positive instances of desiccation cracks provide an upper
bound for the maximum altitude for the surveys. Conse-
quently, they have caused a negative impact on the overall
speed of the system to complete the mission. The camera
gimbal configuration (which delimits the extent of the cam-
era’s footprint) and image resolution of streamed frames are
other factors which affect both the speed and model metrics
(i.e., accuracy and recall). Improvements in the CNN-based
detector metrics, processing of high-resolution images, and
gimbal configuration using oblique camera angles to increase
the footprint extent could reduce inspection times recorded
by the UAV in hybrid mode. These improvements, however,
could come with an increased demand for computational
resources of the companion computer. Future research im-
plementations of this framework should consider any com-
puting performance impacts by onboard inference from better
CNN architectures, and processing of high-resolution camera
frames in resource-constrained hardware systems such as the
UP2 [36].

The UAV framework presented in this paper represents a
novel approach towards fully automated UAV navigation for
planetary exploration and mapping of desiccation cracks in
the search of past life forms. Extraterrestrial environments
for UAV exploration are complex and full of uncertainties,
including, but not limited to, low illumination conditions,
data noise caused by radiation, strong winds and dust. Chal-
lenging atmospheric conditions and absence of GNSS signal
coverage, occlusion from obstacles, and imperfections from
CNN model detectors can negatively affect the success of
a UAV flight mission. This work proposes a probabilistic-
based motion planner that addresses many of these factors
by using POMDPs, which allow the modelling of uncer-
tainty using probabilistic distributions and state beliefs. By
testing a sub 2 kg UAV system for autonomous navigation
and mapping of desiccation cracks in a simplified setup,
future implementations should evaluate the performance of
the motion planner and the UAV under more realistic testing
conditions. Some areas that can be enhanced include UAV
simultaneous localisation and mapping (SLAM) algorithms
for autonomous navigation in GNSS-denied environments, a
module for obstacle avoidance and landing detection [37],
and a UAV frame design and electronic components aligned
with standards for planetary exploration. In addition, au-
tonomy and extended capabilities to survey big areas could
be augmented through the use of a swarm of UAVs for
cooperative detection and inspection of desiccation cracks
and similar present and former aquatic ecosystems for the
search of biosignatures.
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6. CONCLUSIONS
This paper presented a UAV framework and motion planner
for planetary exploration through the autonomous navigation
and mapping of desiccation cracks in partially observable
environments. The framework proposed a novel flight mode
(i.e., hybrid mode) which reduced levels of object segmenta-
tion uncertainty by executing an online POMDP solver that
calculates a motion policy. This policy, which can be updated
mid-flight, allowed the UAV to interact with the environment
and obtain improved visualisations of potential detected ob-
jects. The UAV system was evaluated with a case study of
searching for biosignatures through segmentation and map-
ping of desiccation cracks. Real flight tests and performance
metrics indicate that the proposed framework provides an
improved collection of crack texture coordinates compared to
a baseline motion planner. Furthermore, flight tests in hybrid
mode allow the compilation of high-resolution quadmaps for
improved map reproduction for post-processing analysis.

The framework discussed in this work extends the contribu-
tions of Sandino et al.[6, 24] by; (1) extending their tested
UAV framework in applications beyond the scope of remote
sensing and SAR operations; (2) additional validations of
their framework from simulation to real flight tests; and
(3) demonstrating a scaling approach to the modular frame-
work design by adapting an OAK-D camera and a custom
ResNet18 segmentation model for detection and mapping of
desiccation cracks.

Avenues of future research include performance evaluation
of the UAV system by processing high-resolution camera
frames and more complex CNN architectures. Additional
tests with multiple crack blobs and an increase in environment
complexity (e.g., type and number of obstacles, slope terrain,
navigation in GNSS-denied environments), as well as flight
tests with UAV frame designs that are aligned with real de-
signs for planetary exploration are encouraged. A study that
compares the performance of other online POMDP solvers
in resource-constrained hardware could help understand the
limits of the ABT solver for UAV motion planning under
uncertainty. Other planners that are not based on POMDPs
could also enrich the literature on UAV path planners for plan-
etary exploration under environment uncertainty and partial
observability.

APPENDIX
The flight plan parameters for conducted tests in mission and
hybrid flight modes are shown in Table 3 respectively.

The set of hyper-parameters used in the TAPIR toolkit for
flights in hybrid mode are shown in Table 4.
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Table 4. Set of hyper-parameters used in the TAPIR
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Chapter 8 

Conclusions 

THIS research developed a fully autonomous decision-making system using sequential decision 

processes (SDPs) onboard a sub-2 kg quadrotor UAV with increased cognition to autonomously 

explore and fnd objects, without human intervention in partially observable indoor and outdoor 

environments. This research created a novel scalable UAV framework for onboard inference of convo-

lutional neural network (CNN) models and developed a partially observable Markov decision process 

(POMDP)-based motion planner for small UAVs to operate in real-world environments under object 

detection uncertainty. The research contributions were validated throughout the publication of fve 

academic peer-reviewed papers, presented in Chapters 3 to 7 as body chapters of this dissertation. 

The six key contributions are: 

1. Paper 1: the formulation of a UAV decision-making problem using a POMDP for real-time 

navigation in global navigation satellite system (GNSS)-denied cluttered indoor environments 

under various types of object detection uncertainty, tested in software in the loop (SIL) and 

with onboard inference of a CNN object detector using hardware in the loop (HIL). 

2. Paper 2: the development of a decision-making framework for autonomous decision-making 

onboard sub-2 kg UAVs for navigation in GNSS-denied environments under object detection 

uncertainty, validated in both simulated and real fight tests. 

3. Paper 3: an extension of the problem formulation (Paper 1) for autonomous UAV navigation 

in outdoor environments under object detection uncertainty, using a novel reward function 

defnition that improved UAV’s traversed path. The established UAV system adapts its motion 

policy with and without pre-defned survey plans due to the creation of a novel fight mode (i.e., 

hybrid mode). 

4. Paper 3: the design of a UAV system architecture that bridges the gap between simulated and 

real fight tests to obtain high-fdelity statistics of UAV behaviour in simulation, and speed the 

development and testing process of problems formulated using model-based POMDP solvers 

and implemented UAV frameworks. 

5. Paper 4: the creation of a modular and scalable UAV framework for autonomous exploration 

and object fnding in outdoor environments, tested successfully in SAR contexts, with a range 

of red, green, blue (RGB) and thermal camera payloads, and CNN models, validated with real 

fight tests. 

6. Paper 5: the development of a decision-making framework for autonomous detection and 

mapping of desiccation cracks using small UAVs, demonstrating the scalability capabilities of 

139 
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the UAV framework (Paper 4) in a new survey domain (planetary exploration), camera payload, 

and CNN-based semantic segmentation model. 

This research established two key components as the most impactful research contributions: 1) 

the design of the reward function and tuned hyperparameter values; and 2) the problem formulation 

using a POMDP, as they critically infuenced the behaviour of the UAV to accomplish its mission 

during the experimental phase. The design of the reward function extended the traditional defnition 

of the sum of conditioned reward variables and fxed values into an algorithm that prioritised the 

evaluation of system states (and returned reward values) into three key stages: 1) assessment of next 

states that compromised the integrity of the UAV, environment, or objects of interest; 2) assessment 

of next states that led the UAV to achieve the mission (e.g., potential victim/dessication crack found, 

or victim/dessication crack confrmed); and 3) evaluation of other “non-terminal” states by returning 

constant cost values or established equations, such as UAV to object vertical and horizontal distance 

cost, and explored footprint cost. Reward function defnitions and tuned hyperparameters per case 

study presented in papers 1 to 5, Chapters 3 to 7, converged after an initial iterative process with the 

UAV system in HIL simulations by following a grid search technique. This research demonstrated that 

enabling SIL and HIL support resulted in a robust architecture design, as no major adjustments to 

hyperparameters were required while transitioning between HIL simulations to real fight tests. 

8.1 Research Findings 

The questions presented in Section 1.2.1 determined the scope of this research to design a UAV 

system that can navigate autonomously and detect uncertain objects in uncertain environments. 

This section highlights the research fndings arising from each research question. 

Research Question 1.1 

What level of artifcial cognitive learning and uncertainty modelling is required to identify, localise or 

quantify objects positioned in cluttered and challenging scenarios using small UAVs and vision-based 

object detectors? 

This research identifed and confrmed that using POMDPs enable autonomous decision-making 

under uncertainty and partial observability in multi-objective UAV navigation problems. A model-

based online POMDP solver was employed to compute a path planning strategy, and subsequently 

update it onboard the aircraft after collecting new observations in challenging indoor and outdoor 

environments. These model-based POMDP solvers, such as adaptive belief tree (ABT) enable fexible 

modelling of uncertainty via probabilistic distributions over a set of belief states. 

This effective approach to model uncertainty using a POMDP framework was established (Chap-

ters 3 and 4) by: 1) predicting local position changes of the UAV per action taken through a system 

identifcation process (SIP) in MATLAB, which converges to an approximate transfer function of the 

UAV motion dynamics (including the selection of most suitable function order), and applied discrete 

control theory to obtain the motion response equation of the UAV (Section 3.4.6); 2) estimating the 

detection, or presence of a potential object conditioned by the camera pose at the UAV frame and its 

projected footprint of the environment (Section 3.4.9); and, 3) modelling the detection confdence 

from potential detections using a linear function that returned high confdence values the closer the 

UAV is from the object and vice versa (Section 4.4.4). These models were implemented in the genera-

tive model of the ABT solver, which populates probabilistic data to the transition T and observation 
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Z functions from a modelled observation o ∈ O given an action a ∈ A and the next state s ′ ∈ S. 

The use of POMDPs for autonomous UAV navigation under uncertainty enabled the modelling 

of initial belief states using probability distributions, testing three types of distribution setups in ac-

cordance to the situational awareness of the survey mission, prior to any fight operations. Normal 

distributions were applied in fight setups where the object (i.e., victims/dessication crack) believed 

to be placed at one or multiple locations, and uniform distributions covering the fight area if the loca-

tion of the potential object was unknown. A third extension to initial particle belief distribution was 

used in outdoor fight operations in hybrid mode, with uniform distributions covering the camera’s 

feld of view (FOV), and enable the UAV to inspect areas with the potential presence of objects. The 

UAV was therefore capable of executing sequential action commands for an average of one second 

and four seconds in indoor and outdoor environments, respectively, by implementing the formulated 

navigation problem using the ABT solver. Higher accuracy of recorded object locations was identifed 

in experimental tests in outdoor environments by incorporating the developed POMDP-based mo-

tion planner (and offboard and hybrid modes), with the expense of slightly reduced speeds to survey 

areas compared to baseline motion planners (e.g., traditional missions in lawnmower patterns from 

a list of position waypoints). 

Research Question 1.2 

Which factors defne the complexity of an SDP so as to reduce object detection uncertainty from col-

lected environment observations using vision-based sensors in time-critical applications? 

This research into the modelling of UAV navigation problems with POMDPs demonstrated the great-

est impact on the behaviour of the aircraft to reduce object detection uncertainty relies on the defni-

tion of the reward function R(s, a). For instance, (Chapter 3) a simplifed defnition of R (Section 3.4.7) 

as the sum of individual reward variables with assigned values only after matching a system state s 

after taking an action a. Increasing the complexity of R (Section 4.4.4) by adding two-dimensional 

(2D) map representations of paths previously traversed by the UAV improved the UAV trajectories 

when navigating under an initial object location belief defned using normal distributions in single or 

multiple locations (Chapter 4). Since some fight tests reported suboptimal trajectories if the initial 

belief state of the location of the object was defned using uniform probability distribution across the 

fying area (Figure 4.13), R was extended using a novel pseudocode containing a set of conditionals 

for each reward variable and new concepts such as the UAV altitude, horizontal distance, and foot-

print overlap costs (Section 5.3.5). Recorded trajectories (Chapter 5 onwards) revealed a signifcant 

improvement in UAV behaviour for exploration and inspection of areas with potential presence of 

objects in outdoor environments, with and without a predefned fight plan. 

Other factors that follow the defnition of R, in terms of agent behaviour (but to a lesser degree), 

are hyperparameter tuning, and the defnition of the action space A. Hyperparameter tuning in this 

research was restricted to set the optimal values of reward variables from R, and hyperparameters of 

ABT implemented in toolkit for approximating and adapting POMDP solutions in real time (TAPIR), 

which were found after conducting an iterative set of HIL simulations using a grid search technique. 

An extension in the defnition of low-level action commands for experiments conducted in outdoor 

environments (Section 5.3.2) had a positive impact on UAV traversed paths considering that ABT only 

enables the defnition of discrete actions. This extension enabled execution of adjustable horizontal 

action commands without augmenting the set of actions in the POMDP formulation by declaring the 

desired overlap, which depends on the altitude of the UAV and the camera’s FOV. 

The software capabilities of fight modes supported by the UAV autopilot simplifed the com-
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plexity requirements of the motion planner. A novel fight mode (i.e., hybrid mode) combined the 

capabilities of mission mode and offboard mode to inspect areas with potential objects using the 

POMDP-based motion planner. This extension reused the software implementation of the motion 

planner in offboard mode by redefning of the search extents of the survey to be conditioned by the 

camera’s FOV, and a software update, to iteratively restart the Decision-making Module after positive 

detections were triggered by the CNN model, until the UAV reached the last position waypoint. De-

veloping this hybrid mode saved research and development resources as it enabled multiple objects 

to be detected without further modifcations to the formulated problem and POMDP-based motion 

planner. 

Research Question 1.3 

What are the modelling considerations in a formulated SDP that enable the scalability of a UAV 

framework for autonomous navigation for a range of diverse vision-based payloads, and remote sensing 

application needs beyond object detection? 

This research identifed (Chapters 6 and 7) three key modelling parameters that allow scaling the 

UAV framework are the: 1) mathematical modelling of a camera’s FOV and footprint extents using the 

sensor lens properties; 2) motion model of a sub 2-kg quadrotor UAV using a SIP; and, 3) modular 

design of the system architecture which allocates high-level detection data from CNN-based object 

or segmentation models into an Observation Server. 

UAV framework implementations (Chapters 6 and 7) demonstrated the benefts of modelling 

a generic FOV and footprint estimations based on the specifcations of the sensor lens. A switch 

between vision-based payloads, such as the HBV 1615, Arducam b019710, GoPro Hero9 and OpenCV 

AI kit (OAK)-D RGB cameras, and the FLIR Tau 2 thermal camera, only required updating the sensor 

lens specifcations, most of which are available from the sensor datasheet, to the POMDP formulated 

problem, in order to integrate the camera with the UAV system. 

The motion modelling of the Holybro X500 quadrotor UAV using a SIP enabled high level of abs-

traction of action commands regardless of their desired magnitude in traversed horizontal distance 

(e.g., 1, 2, 5, 10 m). However, the framework implementation for indoor and outdoor environments 

was limited to a single UAV frame. Other multirotor UAV frames are expected to work provided a new 

SIP is conducted beforehand with the help of a high-quality Motion Tracking System such as VICON. 

The use of a GNSS-RTK device is encouraged to collect step responses of the UAV frame by changes 

in position and velocity commands in outdoor environments with the absence of motion tracking 

systems. 

The system architecture design (Figures 6.2 and 7.2) implemented an Observation Server which 

translates explicit detection outputs by onboard inference of CNN models into generic observations 

compatible with the defned observations in the problem formulation using POMDPs. This scalability 

capability was validated in the framework implementation that detected and mapped desiccation 

cracks (Chapter 7), after successfully converting segmented blobs into bounding boxes with centroids 

that represent objects (Section 7.2.2). 

Research Question 2.1 

How can computationally intensive tasks such as online SDP algorithms, and onboard inference of 

CNN models for object detection and segmentation, be integrated to run simultaneously under resource-

constrained hardware in sub-2 kg UAVs? 
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This research developed modular frameworks that formulate, implement and execute UAV systems 

with enhanced cognition for autonomous navigation in time-critical applications, and in indoor and 

outdoor environments. The design contributions of UAV system architecture (Chapters 3, 4, 6 and 7) 

demonstrated a successful selection of hardware and software resources to optimise the framework 

implementation for sub 2-kg UAVs. Developing realistic simulation environments (Chapters 4 and 5) 

bridged the gap between simulated experiments and real fight tests as the behaviour of the UAV 

remained consistent after transitioning from simulated to physical experiments without returning hy-

perparameters, and reducing therefore research and development efforts on determining the optimal 

combination of hardware and software tools. 

This simulation environment was developed by: 1) emulating the specifcations and capabilities 

of the UAV autopilot through SIL; 2) enabling HIL to test developed SDPs (i.e., model-based POMDP 

solvers using ABT) running onboard the physical companion computer attached to the sub-2 kg UAV 

frame; 3) performing onboard inference of CNN models (through HIL and the companion computer) 

for object detection and segmentation after streaming camera frames from an emulated vision-based 

sensor; and, 4) integrating real-world datasets and visual terrain textures collected from airborne UAV 

fights, such as high-resolution RGB orthomosaics and light detection and ranging (LiDAR) data. 

The simulation environment developed in the Gazebo simulator and robot operating system 

(ROS) lead to the design of modular framework components, as well as emulating the UAV autopilot 

capabilities through the PX4 SIL plugging. An Intel UP2, the companion computer used to compute 

the ABT solver (through the TAPIR toolkit) in the simulator and real fight tests, contained a Myriad X 

vision processing unit (VPU) connected to a PCIe slot, utilised for onboard inference of CNN models. 

Research Question 2.2 

What are the design criteria to scale a UAV framework for autonomous navigation under environ-

ment and object detection uncertainty to other remote sensing applications that require autonomous 

decision-making capabilities onboard small UAVs? 

This research established a UAV system architecture design (Chapters 5 to 7) to execute key modular 

components such as the Computer Vision Module, Mapping Module, Decision-making Module, and 

Motion Module. The UAV framework implemented in this research followed the above-mentioned 

architecture design, and enabled a sub-2 kg UAV to: 1) search and locate a child-shaped mannequin 

in an emulated offce building; 2) explore and inspect areas to detect potential victims using adult-

shaped mannequins in a bushland; and, 3) detect and map desiccation cracks from dry lake beds. 

These scalability capabilities were validated after integrating multiple vision-based payloads in 

the Holybro X500 quadrotor frame, a set of custom CNN models for onboard inference per case study 

and image source (i.e., RGB or thermal), and high-level hyperparameter adjustments for each fight 

operation. The modelling of the camera lens properties in the POMDP problem formulation enabled 

the use of payloads, ranging from RGB cameras (i.e., HBV 1615, Arducam b019710, GoPro Hero 9), 

thermal cameras with real time detection of adults (i.e., FLIR Tau 2, shown in Chapter 6 and video pre-

view1) and an OAK-D. The design of the Computer Vision Module enabled high levels of abstraction 

and use various CNN model architectures such as MobileNet SSD to detect victims using RGB frames, 

TinyYoloV2 to detect victims using Thermal imagery, and a ResNet18 for semantic segmentation of 

desiccation cracks using RGB data. This UAV framework is robust and can be expanded to other uses, 

such as the development of a UAV system for real-time segmentation of desiccation cracks [100], and 

1 https://youtu.be/yIPNBwNYtAo?t=148 

https://youtu.be/yIPNBwNYtAo?t=148
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semantic quad- and oc-trees for UAV map representation and navigation [101]. 

8.2 Recommendations 

The following seven technical recommendations should be considered to reproduce the UAV frame-

work and problem formulation for autonomous navigation onboard small UAVs using POMDPs, com-

puter vision and vision-based sensors: 

• Middleware: despite the use of ROS satisfed the needs of implemented UAV frameworks, an 

upgrade to ROS2 as the communication middleware would provide an increasing number of 

libraries, optimisations, and technical support beyond May 2025. 

• Payload (cameras): vibrations in the frame of many small multirotor UAVs are common and 

could negatively affect the quality of streamed camera frames while the UAV is fying. Every 

source of vibration needs to be evaluated with strategies to mitigate it, such as the use of anti-

vibration and gimbal mounts. 

• Thermal cameras: the scalability demonstration of the autonomous UAV system for object 

fnding using thermal imagery (Chapter 6) established in preliminary real fight tests that the 

optimal timeframe to operate with thermal imagery is night conditions when the background 

temperature (i.e., soil or grass, trees and buildings) is considerably different to the body tem-

perature of people. The strong likelihood for background temperatures to reach or surpass 

human body temperatures (36◦C approx.) during daylight conditions could result in visualising 

merged human silhouettes with the background. 

• Reward function: the complexity of the reward function formulated using a POMDP is key in 

infuencing the behaviour of the UAV using model-based POMDP solvers (i.e., ABT solver). A 

signifcant improvement in the traversed path by the UAV was achieved from indoor to out-

door fight tests (Chapters 4 and 5) after defning the penalties for footprint overlap from past 

explored regions, and suboptimal UAV altitude while exploring the environment. 

• Experiment setup: high-fdelity results between SIL/HIL simulations and real fight tests sug-

gest future experiments involving POMDPs could be conducted in simulation frst, and then 

followed with real fight tests. Enabling HIL by running the Computer Vision, Decision-making 

and Motion Modules on the companion computer through the use of ROS and the PX4 SIL 

plugin saved economic and time resources while converging in the required models for the 

transition and observation functions, the tuning of hyperparameters of the TAPIR toolkit, and 

evaluation of fail-safes against unexpected behaviour of the motion planner while operating 

the UAV in offboard and hybrid modes. 

• Flight tests: a comprehensive evaluation of software and hardware fail-safe modes is necessary 

to regain control from unexpected behaviour of the POMDP-based motion planner or UAV 

autopilot. Software fail-safes include overriding action commands sent by the motion planner 

if such commands lead the UAV to collide with obstacles or overpass a pre-defned geofence. 

Defning physical switches from the UAV remote controller could assist in regaining control of 

the aircraft regardless of the current fight mode controlled by the motion server, especially if 

operating the UAV in hybrid mode. An isolated test with the UAV pointing to the objects at a 

range of heights and orientations will identify the CNN model limits and the maximum altitude 

for UAV surveys. 
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• Onboard inference from CNN models: evaluating any performance and speed loss by onboard 

inference in resource-constrained hardware is recommended as other CNN architectures could 

provide better object detection performance than using off-the-shelf detectors such as Mo-

bileNet SSD. Streaming high-resolution camera frames and message transporting using ROS 

could increase the demand of computational resources in embedded systems such as the UP2 

and Intel Myriad VPU. 

8.3 Future Research Avenues 

The contributions from this research provided the foundation to develop small UAVs with fully 

automated onboard navigation under environment and object detection uncertainty. This research 

demonstrates the versatility of POMDP-based motion planners and established frameworks for small 

UAVs in indoor and outdoor environments, research that can be expanded by: 

• Updating 3D occupancy maps mid-fight: the UAV framework for autonomous navigation in 

indoor and outdoor environments reads a 3D occupancy map that represents the location and 

dimensions of any present objects (i.e., obstacles) in the surveyed area. Since the occupancy 

map was compiled prior to any fight tests in simulation and with real hardware, future research 

could integrate sensors capable of displaying depth maps through 3D point clouds. These point 

clouds can be generated using LiDAR or depth cameras (such as Intel Realsense D435), which 

can be processed in Octomap to refresh the 3D occupancy map mid-fight. 

• Implementing complex camera confgurations: the problem formulation created here covered 

downward-looking camera confgurations. Extending the estimation of camera footprint, FOV, 

and object position to ft camera gimbals onboard small UAVs using oblique angles could pro-

vide additional real-time reconnaissance in emergency situations. 

• Adapting the UAV framework to commercial UAV solutions: while the UAV framework pre-

sented in this thesis is a competitive approach for academic and research purposes, higher 

adoption probabilities of this implementation could occur for real-world UAV applications 

provided the framework follows a standalone design compatible with commercial UAV man-

ufacturers such as DJI, Parrot and Yuneec. This adaptation effort should address the fight 

endurance shortcomings of the current UAV frame for extended fight operations for up to 30 

minutes. 

• Extending the problem formulation for multiple and dynamic objects: the problem formula-

tion to detect and locate a single and static object was based on a per camera frame and could 

be extended: for multiple objects appearing simultaneously in the same camera frame; and 

tracking of dynamic objects [64] in environments with and without GNSS signal coverage for 

remote sensing applications such us border protection, surveillance, and pest control. 

• Increasing the action and state space: future extensions to the POMDP formulated problem 

established from this research include adding new actions such as dynamic camera gimbal 

angle, velocity motion commands, and high-level actions included by other UAV autopilots 

(e.g., follow me, take-off, landing). Additional states that could expand this research, in the 

context of SAR and victim detection uncertainty, include whether the victim is alive or injured, 

their age and gender. The evaluation of online POMDP solvers compatible with continuous 

(rather than discrete) actions could improve traversed paths by the UAV if low-level motion 

commands such as position of velocity setpoints are implemented. 



146 Chapter 8. Conclusions 

• Extending problem formulation for a swarm of UAVs: a swarm of UAVs uniformly distributed 

in a survey area will aid applications that demand surveying extensive areas of land as fast as 

possible as occurs in SAR missions, specifcally Refex Tasking, a standard frst response search 

that defnes a 300 m radius of search extent from the last known position, place last seen and 

initial planning position [46]. 

• Improving UAV interactivity with detected objects: specifc actuators attached to small UAVs 

could improve their use in real-world environments, including the deployment of frst aid kits 

to found victims and attached probes for ground sampling of rock sediments. 

• Evaluating system performance with other CNN architectures: incorporating CNN architec-

tures other than the off-the-shelf MobileNet SSD [102], such as Cascade RCNN, RefneDet and 

CornerNet [94], [103] is recommended for future research. These state-of-the-art architectures 

could make surveillance tasks more effective as the UAV should be able to cover larger areas by 

detecting smaller victims/objects at equivalent altitudes and with a higher detection rate. In 

addition, evaluating the performance impacts in resource-constrained hardware for onboard 

inference using these CNN models from high-resolution streamed frames could lead to a better 

understanding of the limits of the decision-making framework in sub-2 kg UAVs. 

• Evaluating the use of other online POMDP solvers: this research could be expanded with a 

performance comparison between ABT and other model-based online POMDP solvers such as 

POMCPOW, LABECOP, and Dec-POMDP [104], or other software toolkits such as JuliaPOMDP 

[105] which encapsulates a range of modular MDP and POMDP solvers that can be tested within 

the same toolkit. 

• Investigating existing standards to regulate the use of small UAVs for SAR: Australia regula-

tions for land SAR operations [46] demand a methodology to successfully integrate the use of 

small autonomous UAVs such as that presented successfully in this thesis into existing proto-

cols, equipment, and procedures. 
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[50] R. Bähnemann, M. Pantic, M. Popović, et al., “The eth-mav team in the mbz international 

robotics challenge,” Journal of Field Robotics, vol. 36, no. 1, pp. 78–103, Jan. 2019. DOI: 10. 

1002/rob.21824 (cit. on pp. 13, 18). 

[51] N. Mandel, M. Milford, and F. Gonzalez, “A method for evaluating and selecting suitable 

hardware for deployment of embedded system on UAVs,” Sensors, vol. 20, no. 16, p. 4420, Aug. 

2020. DOI: 10.3390/s20164420 (cit. on pp. 13, 24). 

[52] E. Faniadis and A. Amanatiadis, “Deep learning inference at the edge for mobile and aerial 

robotics,” in International Symposium on Safety, Security, and Rescue Robotics, Abu Dhabi, 

UAE: IEEE, Nov. 2020, pp. 334–340. DOI: 10.1109/SSRR50563.2020.9292575 (cit. on p. 13). 

https://doi.org/10.1007/s10846-010-9497-5
https://doi.org/10.1007/s10846-010-9497-5
https://patentimages.storage.googleapis.com/b1/82/26/545d9cfe53f827/ES2387144B2.pdf
https://patentimages.storage.googleapis.com/b1/82/26/545d9cfe53f827/ES2387144B2.pdf
https://doi.org/10.1109/MED.2016.7535886
https://doi.org/10.1007/s11069-018-3167-5
https://doi.org/10.1371/currents.dis.67bd14fe457f1db0b5433a8ee20fb833
https://doi.org/10.1111/poms.12930
https://diydrones.com/profiles/blogs/drone-disaster-relief
https://doi.org/10.1155/2017/3296874
https://doi.org/10.1007/978-3-319-56258-2_19
https://doi.org/10.1002/rob.21824
https://doi.org/10.1002/rob.21824
https://doi.org/10.3390/s20164420
https://doi.org/10.1109/SSRR50563.2020.9292575


References 151 

[53] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, MA: MIT Press, 2005, 

pp. 485–542 (cit. on pp. 13, 15, 16, 19). 

[54] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. Cambridge, 

MA: MIT Press, 2018, pp. 1–548 (cit. on pp. 13, 17). 

[55] F. Kendoul, “Survey of advances in guidance, navigation, and control of unmanned rotorcraft 

systems,” Journal of Field Robotics, vol. 29, no. 2, pp. 315–378, Mar. 2012. DOI: 10.1002/rob. 

20414. arXiv: 10.1.1.91.5767 (cit. on pp. 13, 15). 

[56] Y. Zhao, Z. Zheng, and Y. Liu, “Survey on computational-intelligence-based UAV path plan-

ning,” Knowledge-Based Systems, vol. 158, pp. 54–64, Oct. 2018. DOI: 10.1016/j.knosys.2018. 

05.033 (cit. on pp. 14, 15). 

[57] S. Lohr, Is there a smarter path to artifcial intelligence? some experts hope so, New York, USA, 

Jun. 2018. [Online]. Available: https://www.nytimes.com/2018/06/20/technology/deep-

learning-artifcial-intelligence.html (cit. on p. 15). 

[58] G. Marcus, “Deep learning: A critical appraisal,” pp. 1–27, Jan. 2018. arXiv: 1801.00631 (cit. on 

p. 15). 

[59] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of go with deep neural networks 

and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016. DOI: 10.1038/nature16961. 

arXiv: 1206.2944 (cit. on pp. 15, 21). 

[60] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control policies for autonomous 

aerial vehicles with mpc-guided policy search,” in International Conference on Robotics and 

Automation, vol. June, IEEE, May 2016, pp. 528–535. DOI: 10.1109/ICRA.2016.7487175. arXiv: 

1509.06791 (cit. on p. 15). 

[61] J. G. C. Zuluaga, J. P. Leidig, C. Trefftz, and G. Wolffe, “Deep reinforcement learning for auto-

nomous search and rescue,” in National Aerospace and Electronics Conference, vol. 2018-July, 

IEEE, Jul. 2018, pp. 521–524. DOI: 10.1109/NAECON.2018.8556642 (cit. on p. 15). 

[62] O. Walker, F. Vanegas, F. Gonzalez, and S. Koenig, “A deep reinforcement learning framework 

for UAV navigation in indoor environments,” in Aerospace Conference, vol. 2019-March, Big 

Sky, MT, US: IEEE, Mar. 2019, pp. 1–14. DOI: 10.1109/AERO.2019.8742226 (cit. on pp. 15, 24). 

[63] S. Kulkarni, V. Chaphekar, M. M. Uddin Chowdhury, F. Erden, and I. Guvenc, “UAV aided 

search and rescue operation using reinforcement learning,” in SoutheastCon, vol. 2, Raleigh, 

NC, USA: IEEE, Mar. 2020, pp. 1–8. DOI: 10.1109/SoutheastCon44009.2020.9368285. arXiv: 

2002.08415 (cit. on p. 15). 

[64] F. Vanegas, J. Roberts, and F. Gonzalez, “UAV tracking of mobile target in occluded, cluttered 

and GPS-denied environments,” in Aerospace Conference, IEEE, Mar. 2018, pp. 1–7. DOI: 

10.1109/AERO.2018.8396449 (cit. on pp. 15, 24, 145). 

[65] F. Vanegas-Alvarez, “Uncertainty based online planning for UAV missions in GPS-denied and 

cluttered environments,” PhD Thesis, Queensland University of Technology, 2017, pp. 1–170. 

DOI: 10.5204/thesis.eprints.103846 (cit. on pp. 15, 23). 

[66] F. Vanegas and F. Gonzalez, “Uncertainty based online planning for UAV target fnding in 

cluttered and GPS-denied environments,” in Aerospace Conference, vol. 2016-June, Big Sky, 

MT, USA: IEEE, Mar. 2016, pp. 1–9. DOI: 10.1109/AERO.2016.7500566 (cit. on p. 15). 

[67] U. Ilhan, L. Gardashova, and K. Kilic, “UAV using dec-POMDP model for increasing the level 

of security in the company,” Procedia Computer Science, vol. 102, pp. 458–464, 2016. DOI: 

10.1016/j.procs.2016.09.427 (cit. on pp. 15, 20). 

https://doi.org/10.1002/rob.20414
https://doi.org/10.1002/rob.20414
https://arxiv.org/abs/10.1.1.91.5767
https://doi.org/10.1016/j.knosys.2018.05.033
https://doi.org/10.1016/j.knosys.2018.05.033
https://www.nytimes.com/2018/06/20/technology/deep-learning-artificial-intelligence.html
https://www.nytimes.com/2018/06/20/technology/deep-learning-artificial-intelligence.html
https://arxiv.org/abs/1801.00631
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1206.2944
https://doi.org/10.1109/ICRA.2016.7487175
https://arxiv.org/abs/1509.06791
https://doi.org/10.1109/NAECON.2018.8556642
https://doi.org/10.1109/AERO.2019.8742226
https://doi.org/10.1109/SoutheastCon44009.2020.9368285
https://arxiv.org/abs/2002.08415
https://doi.org/10.1109/AERO.2018.8396449
https://doi.org/10.5204/thesis.eprints.103846
https://doi.org/10.1109/AERO.2016.7500566
https://doi.org/10.1016/j.procs.2016.09.427


References 152 

[68] Y. Rizk, M. Awad, and E. W. Tunstel, “Decision making in multiagent systems: A survey,” 

Transactions on Cognitive and Developmental Systems, vol. 10, no. 3, pp. 514–529, Sep. 2018. 

DOI: 10.1109/TCDS.2018.2840971 (cit. on p. 15). 

[69] E. M. Atkins, A. Ollero, and A. Tsourdos, Eds., Unmanned Aircraft Systems. New York, USA: 

Wiley, 2016, pp. 1–710 (cit. on p. 18). 

[70] A. Dutech and B. Scherrer, “Partially observable markov decision processes,” in Markov Deci-

sion Processes in Artifcial Intelligence, O. Sigaud and O. Buffet, Eds., Hoboken, NJ USA: John 

Wiley & Sons, Inc., Mar. 2013, ch. 7, pp. 185–228. DOI: 10.1002/9781118557426.ch7 (cit. on 

p. 19). 

[71] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov decision processes,” Math-

ematics of Operations Research, vol. 12, no. 3, pp. 441–450, Aug. 1987. DOI: 10.1287/moor.12.3. 

441 (cit. on p. 20). 

[72] S. A. Miller, Z. A. Harris, and E. K. Chong, “A POMDP framework for coordinated guidance of 

autonomous UAVs for multitarget tracking,” EURASIP Journal on Advances in Signal Process-

ing, vol. 2009, no. 1, p. 724 597, Dec. 2009. DOI: 10.1155/2009/724597 (cit. on p. 20). 

[73] S. Ragi and E. K. P. Chong, “UAV path planning in a dynamic environment via partially observ-

able markov decision process,” IEEE Transactions on Aerospace and Electronic Systems, vol. 49, 

no. 4, pp. 2397–2412, Oct. 2013. DOI: 10.1109/TAES.2013.6621824 (cit. on p. 20). 

[74] Y. Zhao, X. Wang, W. Kong, L. Shen, and S. Jia, “Decision-making of UAV for tracking moving 

target via information geometry,” in Chinese Control Conference, Chengdu, China: IEEE, Jul. 

2016, pp. 5611–5617. DOI: 10.1109/ChiCC.2016.7554231 (cit. on p. 20). 

[75] C. M. Eaton, E. K. Chong, and A. A. Maciejewski, “Robust UAV path planning using POMDP 

with limited fov sensor,” in Conference on Control Technology and Applications (CCTA), Hawaii, 

USA: IEEE, Aug. 2017, pp. 1530–1535. DOI: 10.1109/CCTA.2017.8062674 (cit. on p. 20). 

[76] M. J. Kochenderfer, Decision making under uncertainty: theory and application. Cambridge, 

MA: MIT Press, 2015, pp. 1–323 (cit. on p. 20). 

[77] F. Vanegas, D. Campbell, M. Eich, and F. Gonzalez, “UAV based target fnding and tracking in 

GPS-denied and cluttered environments,” in International Conference on Intelligent Robots 

and Systems, Daejeon, South Korea: IEEE/RSJ, Oct. 2016, pp. 2307–2313. DOI: 10.1109/IROS. 

2016.7759360 (cit. on p. 20). 

[78] S. Ragi and E. K. P. Chong, “UAV guidance algorithms via partially observable markov decision 

processes,” in Handbook of Unmanned Aerial Vehicles, K. Valavanis and G. Vachtsevanos, Eds., 

Dordrecht: Springer Netherlands, 2015, ch. 73, pp. 1775–1810. DOI: 10.1007/978- 90- 481-

9707-1_59 (cit. on p. 20). 

[79] C. Ponzoni Carvalho Chanel, A. Albore, J. T’Hooft, C. Lesire, and F. Teichteil-Königsbuch, 

“Ample: An anytime planning and execution framework for dynamic and uncertain problems 

in robotics,” Autonomous Robots, vol. 43, no. 1, pp. 37–62, Jan. 2019. DOI: 10.1007/s10514-

018-9703-z (cit. on p. 20). 

[80] M. Chen, E. Frazzoli, D. Hsu, and W. S. Lee, “POMDP-lite for robust robot planning under 

uncertainty,” in International Conference on Robotics and Automation, Stockholm, Sweden: 

IEEE, Feb. 2016, pp. 5427–5433. DOI: 10.1109/ICRA.2016.7487754 (cit. on p. 20). 

[81] S. C. W. Ong, S. W. Png, D. Hsu, and W. S. Lee, “Pomdps for robotic tasks with mixed ob-

servability,” in Robotics: Science and Systems V, Seattle, US: Robotics: Science and Systems 

Foundation, Jun. 2009. DOI: 10.15607/RSS.2009.V.026 (cit. on p. 20). 

https://doi.org/10.1109/TCDS.2018.2840971
https://doi.org/10.1002/9781118557426.ch7
https://doi.org/10.1287/moor.12.3.441
https://doi.org/10.1287/moor.12.3.441
https://doi.org/10.1155/2009/724597
https://doi.org/10.1109/TAES.2013.6621824
https://doi.org/10.1109/ChiCC.2016.7554231
https://doi.org/10.1109/CCTA.2017.8062674
https://doi.org/10.1109/IROS.2016.7759360
https://doi.org/10.1109/IROS.2016.7759360
https://doi.org/10.1007/978-90-481-9707-1_59
https://doi.org/10.1007/978-90-481-9707-1_59
https://doi.org/10.1007/s10514-018-9703-z
https://doi.org/10.1007/s10514-018-9703-z
https://doi.org/10.1109/ICRA.2016.7487754
https://doi.org/10.15607/RSS.2009.V.026


References 153 

[82] Z. N. Sunberg and M. J. Kochenderfer, “Online algorithms for pomdps with continuous state, 

action, and observation spaces,” in International Conference on Automated Planning and 

Scheduling, Delft, Netherlands: AAAI Press, Jun. 2018, pp. 259–263 (cit. on p. 20). 

[83] C. M. Eaton, “Autonomous UAV control and testing methods utilizing partially observable 

markov decision processes,” PhD Thesis, Colorado State University, 2018, p. 115 (cit. on p. 20). 

[84] L. W. Krakow, C. M. Eaton, and E. K. P. Chong, “Simultaneous non-myopic optimization of UAV 

guidance and camera gimbal control for target tracking,” in Conference on Control Technology 

and Applications (CCTA), Copenhagen, Denmark: IEEE, Aug. 2018, pp. 349–354. DOI: 10.1109/ 

CCTA.2018.8511346 (cit. on p. 20). 

[85] Q. Yang, J. Zhang, and G. Shi, “Path planning for unmanned aerial vehicle passive detection 

under the framework of partially observable markov decision process,” in Chinese Control 

And Decision Conference, IEEE, Jun. 2018, pp. 3896–3903. DOI: 10.1109/CCDC.2018.8407800 

(cit. on p. 20). 

[86] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,” in Advances in Neural Infor-

mation Processing Systems 23, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and 

A. Culotta, Eds., Vancouver, BC, Canada: Curran Associates, Inc., 2010, pp. 2164–2172 (cit. on 

pp. 21, 23). 

[87] H. Kurniawati and V. Yadav, “An online POMDP solver for uncertainty planning in dynamic 

environment,” in Robotics Research. Springer Tracts in Advanced Robotics, M. Inaba and P. 

Corke, Eds., vol. 114, Springer, Cham, 2016, pp. 611–629. DOI: 10.1007/978-3-319-28872-7_35 

(cit. on pp. 21, 23). 

[88] J. Sandino, F. Maire, P. Caccetta, C. Sanderson, and F. Gonzalez, “Drone-based autonomous 

motion planning system for outdoor environments under object detection uncertainty,” Re-

mote Sensing, vol. 13, no. 21, p. 4481, Nov. 2021. DOI: 10.3390/rs13214481 (cit. on p. 21). 

[89] D. Klimenko, J. Song, and H. Kurniawati, “Tapir: A software toolkit for approximating and 

adapting POMDP solutions online,” in Australasian Conference on Robotics and Automation, 

Melbourne, Australia: ARAA, Dec. 2014, pp. 1–9 (cit. on p. 22). 

[90] C. Chanel, F. Teichteil-Königsbuch, and C. Lesire, “Multi-target detection and recognition 

by UAVs using online pomdps,” in Proceedings of the Twenty-Seventh AAAI Conference on 

Artifcial Intelligence, Bellevue, Washington: AAAI Press, 2013, pp. 1381–1387 (cit. on pp. 23, 

24). 

[91] L. Lopez-Fuentes, J. van de Weijer, M. González-Hidalgo, H. Skinnemoen, and A. D. Bagdanov, 

“Review on computer vision techniques in emergency situations,” Multimedia Tools and Appli-

cations, vol. 77, no. 13, pp. 17 069–17 107, Jul. 2018. DOI: 10.1007/s11042-017-5276-7. [Online]. 

Available: http://link.springer.com/10.1007/s11042-017-5276-7 (cit. on p. 23). 

[92] H. Choi, M. Geeves, B. Alsalam, and F. Gonzalez, “Open source computer-vision based guid-

ance system for UAVs on-board decision making,” in Aerospace Conference, Big Sky, MT, US: 

IEEE, Mar. 2016, pp. 1–5. DOI: 10.1109/AERO.2016.7500600 (cit. on p. 24). 

[93] B. H. Y. Alsalam, K. Morton, D. Campbell, and F. Gonzalez, “Autonomous UAV with vision 

based on-board decision making for remote sensing and precision agriculture,” in Aerospace 

Conference, IEEE, Mar. 2017, pp. 1–12. DOI: 10.1109/AERO.2017.7943593 (cit. on p. 24). 

[94] B. Mishra, D. Garg, P. Narang, and V. Mishra, “Drone-surveillance for search and rescue in 

natural disaster,” Computer Communications, vol. 156, pp. 1–10, Apr. 2020. DOI: 10.1016/j. 

comcom.2020.03.012 (cit. on pp. 24, 146). 

https://doi.org/10.1109/CCTA.2018.8511346
https://doi.org/10.1109/CCTA.2018.8511346
https://doi.org/10.1109/CCDC.2018.8407800
https://doi.org/10.1007/978-3-319-28872-7_35
https://doi.org/10.3390/rs13214481
https://doi.org/10.1007/s11042-017-5276-7
http://link.springer.com/10.1007/s11042-017-5276-7
https://doi.org/10.1109/AERO.2016.7500600
https://doi.org/10.1109/AERO.2017.7943593
https://doi.org/10.1016/j.comcom.2020.03.012
https://doi.org/10.1016/j.comcom.2020.03.012


References 154 

[95] Hossain and Lee, “Deep learning-based real-time multiple-object detection and tracking from 

aerial imagery via a fying robot with gpu-based embedded devices,” Sensors, vol. 19, no. 15, 

p. 3371, Jul. 2019. DOI: 10.3390/s19153371 (cit. on p. 24). 

[96] E. Lygouras, N. Santavas, A. Taitzoglou, K. Tarchanidis, A. Mitropoulos, and A. Gasteratos, 

“Unsupervised human detection with an embedded vision system on a fully autonomous 

UAV for search and rescue operations,” Sensors, vol. 19, no. 16, p. 3542, Aug. 2019. DOI: 

10.3390/s19163542 (cit. on p. 24). 

[97] B. Lindqvist, C. Kanellakis, S. S. Mansouri, A.-a. Agha-mohammadi, and G. Nikolakopoulos, 

Compra: A compact reactive autonomy framework for subterranean mav based search-and-

rescue operations, Aug. 2021. arXiv: 2108.13105. [Online]. Available: http://arxiv.org/abs/ 

2108.13105 (cit. on p. 24). 

[98] A. Tullu, B. Endale, A. Wondosen, and H.-Y. Hwang, “Machine learning approach to real-time 

3d path planning for autonomous navigation of unmanned aerial vehicle,” Applied Sciences, 

vol. 11, no. 10, p. 4706, May 2021. DOI: 10.3390/app11104706 (cit. on p. 24). 

[99] A. Devos, E. Ebeid, and P. Manoonpong, “Development of autonomous drones for adaptive 

obstacle avoidance in real world environments,” in Euromicro Conference on Digital System 

Design, IEEE, Aug. 2018, pp. 707–710. DOI: 10.1109/DSD.2018.00009 (cit. on p. 24). 

[100] J. Galvez-Serna, N. Mandel, J. Sandino, et al., “Real-time segmentation of desiccation cracks 

onboard UAVs for planetary exploration,” in Aerospace Conference, Big Sky, MT, USA: IEEE, 

Mar. 2022, (accepted) (cit. on p. 143). 

[101] N. Mandel, J. Sandino, J. Galvez-Serna, F. Vanegas, and F. Gonzalez, “Resolution-adaptive 

quadtrees for semantic segmentation mapping in UAV applications,” in Aerospace Conference, 

Big Sky, MT, USA: IEEE, Mar. 2022, (accepted) (cit. on p. 144). 

[102] Y. Chuanqi, Caffe implementation of google mobilenet ssd detection network, with pretrained 

weights on voc0712 and map=0.727. 2020. [Online]. Available: https://github.com/chuanqi305/ 

MobileNet-SSD (visited on 08/30/2020) (cit. on p. 146). 

[103] P. Mittal, R. Singh, and A. Sharma, “Deep learning-based object detection in low-altitude 

UAV datasets: A survey,” Image and Vision Computing, vol. 104, p. 104 046, Dec. 2020. DOI: 

10.1016/j.imavis.2020.104046 (cit. on p. 146). 

[104] M. Hoerger and H. Kurniawati, “An on-line POMDP solver for continuous observation spaces,” 

CoRR, vol. abs/2011.0, Nov. 2020. arXiv: 2011.02076 (cit. on p. 146). 

[105] M. Egorov, Z. N. Sunberg, E. Balaban, T. A. Wheeler, J. K. Gupta, and M. J. Kochenderfer, “PO-

MDPs.jl: A framework for sequential decision making under uncertainty,” Journal of Machine 

Learning Research, vol. 18, no. 26, pp. 1–5, 2017 (cit. on p. 146). 

https://doi.org/10.3390/s19153371
https://doi.org/10.3390/s19163542
https://arxiv.org/abs/2108.13105
http://arxiv.org/abs/2108.13105
http://arxiv.org/abs/2108.13105
https://doi.org/10.3390/app11104706
https://doi.org/10.1109/DSD.2018.00009
https://github.com/chuanqi305/MobileNet-SSD
https://github.com/chuanqi305/MobileNet-SSD
https://doi.org/10.1016/j.imavis.2020.104046
https://arxiv.org/abs/2011.02076

	Keywords
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Publications
	List of Acronyms
	Statement of Original Authorship
	Acknowledgements
	Introduction
	Background
	Time-critical Applications
	Types of Object Detection Uncertainty

	Research Problem
	Research Questions
	Aims of the Study
	Scope

	Research Significance
	Thesis Outline

	Literature Review
	Autonomous Navigation Methods in UAVs
	Autonomous Navigation for Small UAVs in Uncertain Environments
	Sequential Decision Processes (SDPs)
	Markov Decision Processes (MDPs)

	Decision-making under Uncertainty and Partial Observability
	Partially Observable Markov Decision Processes (POMDPs)
	Autonomous Decision-making for Small UAVs using POMDPs
	Adaptive Belief Tree (ABT)

	Small UAV Frameworks for Decision-making in Time-critical Applications
	Summary

	Autonomous UAV Navigation for Active Perception of Targets in Uncertain and Cluttered Environments
	Introduction
	Related Work
	Background
	Problem Formulation
	Partially Observable Markov Decision Process
	Adaptive Belief Tree
	Small UAV Navigation Task
	State Space
	Actions
	Transition Function
	Rewards
	Observation Space
	Observation Model

	Implementation
	System Architecture
	Experimentation Setup

	Results
	Location Uncertainty
	Orientation Uncertainty

	Conclusions

	UAV Framework for Autonomous Onboard Navigation and People/Object Detection in Cluttered Indoor Environments
	Introduction
	Background
	Partially Observable Markov Decision Processes
	Augmented Belief Trees

	System Architecture
	Framework Implementation
	UAV Frame and Drivers
	Operating Systems and Middleware
	Computer Vision Module
	Decision-making Module

	Experiments
	Environment Setup
	POMDP Problem Formulation

	Results
	Discussion
	Conclusions and Future Work

	Drone-based Autonomous Motion Planning System for Outdoor Environments under Object Detection Uncertainty
	Introduction
	System Architecture
	Motion Planner Design
	Assumptions
	Action Commands
	States
	UAV Motion Model
	Reward Function
	Observations
	Observation Model

	Experiments
	Environment Setup
	Victim Locations
	Hardware
	Software and Communications
	UAV Flight Modes

	Results
	Discussion
	Conclusions

	Reducing Object Detection Uncertainty from RGB and Thermal Data for UAV Outdoor Surveillance
	Introduction
	Framework Design
	UAV Airframe and Payloads
	Vision Module
	Mapping Module
	Planner Module
	Communication Interface

	Planner Design
	Assumptions
	Actions
	States
	Transition Function
	Reward Function
	Observations
	Observation Model

	Experiments
	Location and Environment Setup
	Flight Modes
	POMDP solver

	Results and Discussion
	Conclusions

	Autonomous Mapping of Desiccation Cracks via a Probabilistic-based Motion Planner Onboard UAVs
	Introduction
	Framework Design
	UAV and Sensors
	Semantic Segmentation Model
	Communication Interface

	POMDP Motion Planner Design
	Assumptions
	Actions
	States
	Transition Function
	Reward Function
	Observations
	Observation Model

	Experiments
	Environment Setup
	Flight Modes
	POMDP solver

	Results and Discussion
	Conclusions

	Conclusions
	Research Findings
	Recommendations
	Future Research Avenues

	References



