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Abstract—Surveillance tasks of weeds and vegetation in arid
lands is a complex, difficult and time-consuming task. In this
article we present a framework to detect and map invasive
grasses, combining UAVs and high-resolution RGB technologies
and machine learning for data processing. This approach is
illustrated by segmenting Buffel Grass (Cenchrus ciliaris) and
Spinifex (Triodia sp.). Segmentation results produced individual
detection rates of 97% for buffel grass, 96% for spinifex and
97% for the overall classification task. The algorithm is robust
against variations in illumination, occlusion, object rotation and
density of vegetation.

Index Terms—biosecurity, Cenchrus ciliaris, drones, remote
sensing, Triodia sp., UAV, vegetation assessments, weeds.

I. INTRODUCTION

For the last decades, the effects of invasive grasses have re-
sulted in catastrophic damages on host ecosystems worldwide.
Attempts to control introduced plants have been remarkably
complex owing to limited and challenging access to isolated
regions, high operational expenses and, to a certain degree,
the difficulty in campaigns for data collection campaigns [1].
invasive grasses have flourished in arid landscapes like Aus-
tralia because of their resistance under hot, wet and dry
conditions [2], [3]. Many species have invaded wetter and
more fertile country areas and influenced the existence of
endemic plant and animal populations [4]–[6]. Straightaway,
efficient and reliable examination techniques are wanted to
quantify development rates and directions of invasive grasses.
[6]–[10].

The design and path planning of UAV systems together
with the lower cost of off-the-shelf autopilots and affordable
solutions [11]–[14], UAVs have seen a remarkable uptake
on remote sensing approaches for invasive grasses and other
vegetation surveillance [15]–[18]. Hyperspectral sensors to de-
tect invasive grasses has shown breakthroughs over traditional
methods like satellite imagery [19]. Some research present
approaches that comprise UAVs and multispectral cameras for
invasive plant mapping, obtaining detection rates up to 96%
[20]–[23]. Nevertheless, several applications and ecologists
still support the feasibility of using simpler UAVs and RGB
cameras, with accurate results [24].

Data processing methods that evaluate and track vegetation
have also offered diverse results. Amongst them, the calcu-
lation of vegetation and soil indexes for weed detection has
achieved considerable demand [25]–[27]. Overall, supervised
and unsupervised classification and segmentation algorithms
are hugely affected by image quality, the number of spectral
bands and spatial resolution or Ground Sampling Distance
(GSD). Universal standards have not been determined by
choosing adequate data processing and sensing technology
processes that meet any application requirement [28]. This
work presents an overview of the primary outcomes of the
Plant Biosecurity CRC 2164 project “Developing pest risk
models of Buffel Grass using Unmanned Aerial Systems and
statistical methods” [29] and related publications [30]–[32]. It
comprises UAVs, high-resolution RGB sensors and artificial
intelligence to detect and map invasive grasses and other
vegetation using a flexible survey method. This approach is
represented through the automatic classification of buffel grass
(Cenchrus ciliaris) and spinifex (Triodia sp.) in arid lands of
Western Australia (WA).

II. METHODOLOGY

A. Framework

We designed a framework that comprises “Acquisition”,
“Preprocessing” , “Training”, and “Prediction” stages, as de-
picted in Figure 1. First, High-resolution RGB imagery are
acquired using a data collection campaign with a UAV. The
photos are extracted and preprocessed to obtain samples with
essential features. Moreover, those images are labelled and
processed in a machine learning supervised classifier, which
is fitted and optimised subsequently. Lastly, the orthomosaic
image is completely processed to map the predicted locations
of invasive grasses in the studied area.

B. Site

Methods are demonstrated in a case study located at the
Cape Range National Park (CRNP), WA, Australia. The area
includes mixed regions with buffel grass, decomposed vegeta-
tion, spinifex, arid and semi-arid soil, and other bushes. Photos



Fig. 1. Framework for detection of invasive grasses.

were captured in a continuous set of four flight campaigns. The
mission was performed in July 10, 2016, from 12:30 to 14:30.
Recorded weather conditions describe a sunny day, relative
humidity of 46%, with south-easterly winds ranging from 17
to 26 km/h, a mean temperature of 21.2 ◦C, and no rainfall
[33].

C. Drone and Flight Campaign

We used A Hexa-rotor DJI S800 EVO UAV (DJI, Guang-
dong, China) which followed a mission route using the DJI
Ground Station 4.0 software solution. The mission was con-
ducted at 66.9 ± 4.6 m altitude, 80% overlap, 50% side
lap, a 6.6 km track distance at 16 km/h, and 1.0152 cm/
pixel vertical and horizontal GSD. The drone specifications
include brushless motors of high-performance, a whole weight
of 4 kg, an incorporated gimbal that provides 3-axis ac-
tive stabilisation of the utilised payload, and dimensions of
118 cm × 100 cm × 50 cm.

D. Camera

A Canon EOS 5DsR (Canon Inc., Tokyo, Japan) digital
camera was used to acquire high-resolution pictures. The

Fig. 2. Image with highlighted blobs using distinct colours.

camera has an image resolution of 50 MP, a focal length of 28
mm, a speed “ISO-400”, image sensor size of 36 × 24 mm,
an exposure time of 625 µs, and a GPS sensor.

E. Software tools

An orthomosaic image was first obtained by processing
more than 500 raw photos with Agisoft PhotoScan 1.3. The
software produced a stitched picture of 44800 × 17200 pixels,
which sized 2.4 GB. This image was consequently split into
4816 frames of 400 × 400 pixels in TIF and KML image
formats. Then, several samples of cropped regions from the
orthophoto were also derived to be labelled through GIMP
2.8.22, and fit a supervised classifier. The imagery was pro-
cessed in Python 2.7.14 and Scikit-learn 0.19.1 [34], XGBoost
0.6 [35], Matplotlib 2.1.0 [36] and OpenCV 3.3.0 [37] third-
party libraries.

F. Labelling of imagery

Owing to the diverse conditions where invasive grasses
are found in CRNP, 11 pictures were picked and examined
by experts applying photo interpretation. Buffel Grass and
spinifex as invasive grasses and specific objects in the area
were marked using distinct colours as shown in Figure 2.

Picture labelling is done using a mask for each sample. The
mask is created by following Equation 1, which assigns integer
values for all the marked pixels.

H(x,y) =

{
a if S(x,y) = F(R,G,B)

0 otherwise (1)

where H is the mask for each sample S and a is an integer
number that identifies the depicted colour in F(R,G,B). For this
case study, we assigned a following the list: 1: buffel grass,
2: soil; 3: bushes; 4: shadows; 5: decomposed vegetation; 6:
spinifex.



Algorithm 1 Segmentation of invasive grasses.
Needed: orthomosaic picture I . Set of samples G. Set of
masks H
Training

1: for i← 1, n do
2: Load Gi and Hi photos
3: Transform colour model of Gi to HSV
4: Add each colour channel to the feature array D
5: Apply 2D filters on Gi and add their results into D
6: From Gi and Hi, filter only the labelled pixels on D
7: end for
8: Divide D into a training data DT and testing data DE

9: Fit a XGBoost classifier X using DT

10: Apply K-fold cross validation with DE

11: Apply grid search using parameters of X
Segmentation

12: for i← 1,m do
13: Load Ii photo
14: Transform colour model of Ii to HSV
15: Predict the object using X
16: Oi ← Transform the data to a 2D picture
17: Export Oi to a TIF format file
18: end for
19: return Oi

G. Algorithm

Algorithm 1 was designed to identify and filter areas that
were previously marked, fit and tune a machine learning
model, predict unlabelled data, and segment the results.

Algorithm 1 contains a training part where data is read as
an array of attributes or features, processed by the classifier
afterwards. In Step 3, sample pictures G are transformed from
their RGB colour model to hue, saturation, value (HSV) colour
model to obtain the feature array D. Next, in Step 5 a group of
2D filters are used on G, whose resulted pictures are added to
D, subsequently. From Equations 2 and 3, these filters estimate
the variance from a subset of pixels held in a kernel.

X =
1

w2


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 (2)

s2 = E[X2]− E[X]
2 (3)

where X is the filter kernel, w is the size, and s2 is the
variance, described as the subtraction between the mean of
square and the square of mean. For this case study, the array
D comprises 10 parts listed: hue; saturation; value; 2D filters
on hue, with w equals 3 and 15; on saturation, with w equals
3 and 15; and on Gi in grayscale, with w equals 3, 7 and 15.
Succeeding, by using Equation 4 in Step 6, labelled pixels are
filtered employing the masks H .

Dj =

{
[Gi(x, y), Hi(x, y)] if Hi(x, y) 6= 0

null otherwise (4)

where Dj is the generated 2D array, Gi(x, y) is the sample
picture and Hi(x, y) is the labelled counterpart of Gi in the
position (x, y). The samples were split arbitrarily into training
(DT ) and testing (DE) arrays at 75% and 25% respectively. In
Step 9, the arrays are processed to a XGBoost classifier [35],
optimised for excellent performance and huge tree structures.
In step 11, a grid search is performed to tune classifier’s hyper-
parameters like the learning rate, the number of estimators
and maximum depth. In this circumstance, the optimal values
without causing over-fitting are:

learning rate = 0.1, estimators = 100, maximum depth = 3

where “learning rate” is the size of each boosting step,
“estimators” is the number of trees and “maximum depth”
is the highest depth per tree which determines model’s com-
plexity. From Steps 13 to 17, all the orthomosaic patches
are processed utilising the fit classifier, employing the same
data transformations explained above. Eventually, pixels are
repainted using distinct colours and the entire picture exported
in TIF format.

III. RESULTS AND DISCUSSION

A sum of 85657 labelled pixels from the photo interpretation
task was assessed using DE . The confusion matrix of the
classifier, as well as its classification report, are shown in Table
I.

From the table, precision is defined as the proportion of
labelled instances as true positives (TP) and the sum of TP and
false positives (FP); recall as the proportion of TP and the sum
of TP and false negatives (FN); f-score is the mean of precision
and recall; and support is the number of processed pixels per
group. Here, while precision errors refer to misleading results
by classifying pixels in wrong classes, recall errors represent
the extent of an incomplete class detection. In sum, virtually
all the classes showed accurate classification results. Misclassi-
fication records of buffel grass and spinifex were considerably
small. For the former, for example, precision and recall errors
were of 1.92% and 1.40%, and spinifex error rates of 2.23%
and 3.11%, respectively. Furthermore, decomposed vegetation
(2.88% and 2.69%) and spinifex errors (0.98% and 1.05%)
happened because of multiple instances the weed was found
in senescence conditions. In contrast, bushes error reports were
higher, with pixels classified incorrectly as buffel grass (3.81%
and 13.59%) and spinifex (0.49% and 1.74%). Conclusively,
Algorithm 1 has overall rates of 97% and 95.76%. However,
certain bushes were misclassified as buffel grass, considering a
recall value of 84.15%. Holding an equivalent significance of
precision and recall in the research, the overall classification
rate is 96.54%. Examples of the segmentation process are
illustrated in Figure 3.

As shown in Figures 3a and 3c, samples of invasive grasses
and other vegetation are segmented at diverse spatial densities
and illumination conditions. Figures 3b and 3d depict the
processed segmentation. Reviewing the classification report
from Table I, the framework offers accurate mapping outputs



TABLE I
CONFUSION MATRIX AND CLASSIFICATION REPORT

Predicted Buffel Soil Bushes Shadow Dry Veg. Spinifex Precision (%) Recall (%) F-Score (%) Support
La

be
lle

d

Buffel 25256 17 156 0 4 362 95.60 97.91 96.75 25795
Soil 15 25196 1 0 1 0 99.88 99.93 99.90 25213
Bushes 632 1 3913 2 21 81 95.53 84.15 89.84 4650
Shadow 0 1 0 7729 0 0 99.95 99.99 99.97 7730
Dry Veg. 8 10 6 2 5734 159 96.68 96.87 96.78 5919
Spinifex 508 2 20 0 171 15649 96.30 95.71 96.00 16350

Mean 97.32 95.76 96.54
∑

= 85657

(a) (b)

(c) (d)

Fig. 3. Final outputs of Algorithm 1. (a) (b) Orthorectified images. (c) (d) Classification and segmentation outputs.

for buffel grass, soil, spinifex and shadows. Still, bushes
classification is variable in some photos, perceived in various
cases as picture noise.

Proportions of misclassifications for buffel grass and
spinifex are virtually negligible and tentatively caused by
human errors during the photo interpretation phase. From a
biosecurity and monitoring perspective, the presented approach
provides essential data like the spread trends of invasive
grasses, their proportion rates in arid lands, forecasts in the
short and mid-term, among others.

This investigation shares a reliable assessment tool by
the integration of UAVs and machine learning classifiers
for invasive grasses, weeds and vegetation. Regarding the

detection and mapping of invasive grasses in arid lands,
this work satisfies the requirements for accurate and efficient
surveillance solutions utilising high-resolution RGB pictures
and pixel-wise classification solely without the need for multi-
or hyperspectral data.

In this case study, the vegetation presented small
size changes, occlusion, background clutter, and viewpoint
changes, representing, possibly, an advantage in the com-
plexity of the issue. Low GSD values for image processing
confirms how improvements in sensing abilities of UAVs and
their sensing equipment, opposite to satellite and manned air-
craft for invasive grass surveys. Further investigations should
evaluate the effectiveness of both unsupervised and supervised



models to label vegetation and invasive grass contours pre-
cisely. Also, particular areas should be better developed for
real-time purposes.

IV. CONCLUSION

This work presents a mixed methodology to detect and
segment vegetation and invasive grasses in arid lands. The
classification algorithm was illustrated by achieving detection
reports of 96.75% for individual identification of buffel grass
and 96.00% for spinifex, and an overall detection rate of
96.54%. Invasive grasses and vegetation were captured at GSD
values up to 1.015 cm/pixel and recognised at various spatial
densities, confirming the reliability of UAS for the detection
of invasive grasses at early stages. Further research should be
concentrated on integrating vegetation labelling using super-
vised and unsupervised models and reduce processing times
during the training and prediction stages.
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