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Abstract—The use of Small Unmanned Aerial Vehicles (sUAVs)
has grown exponentially owing to an increasing number of au-
tonomous capabilities. Automated functions include the return
to home at critical energy levels, collision avoidance, take-off
and landing, and target tracking. However, sUAVs applica-
tions in real-world and time-critical scenarios, such as Search
and Rescue (SAR) is still limited. In SAR applications, the
overarching aim of autonomous sUAV navigation is the quick
localisation, identification and quantification of victims to pri-
oritise emergency response in affected zones. Traditionally,
sUAV pilots are exposed to prolonged use of visual systems to
interact with the environment, which causes fatigue and sensory
overloads. Nevertheless, the search for victims onboard a sUAV
is challenging because of noise in the data, low image resolution,
illumination conditions, and partial (or full) occlusion between
the victims and surrounding structures. This paper presents
an autonomous Sequential Decision Process (SDP) for sUAV
navigation that incorporates target detection uncertainty from
vision-based cameras. The SDP is modelled as a Partially Ob-
servable Markov Decision Process (POMDP) and solved online
using the Adaptive Belief Tree (ABT) algorithm. In particular,
a detailed model of target detection uncertainty from deep
learning-based models is shown. The presented formulation
is tested under Software in the Loop (SITL) through Gazebo,
Robot Operating System (ROS), and PX4 firmware. A Hard-
ware in the Loop (HITL) implementation is also presented using
an Intel Myriad Vision Processing Unit (VPU) device and ROS.
Tests are conducted in a simulated SAR GPS-denied scenario,
aimed to find a person at different levels of location and pose
uncertainty.
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are currently used in sig-
nificant civilian applications such as remote sensing, disaster
monitoring, surveillance, and Search and Rescue (SAR) [1].
Part of the success of this technology is caused by cheaper
hardware and advances in sensor systems, computer vision
and image processing, and autonomous navigation. Ad-
vances in autonomous navigation include automated home
return at critical battery levels, reactive collision avoidance,
autonomous take-off and landing, and active target tracking.
Nonetheless, the deployment of these systems at a broader
scale is still restricted by operational limitations in hardware
and software [2]. Current limitations on Small UAVs (sUAVs
are drones that weigh less than 13 kg [3]) include: (a) on-
board computing power, (b) payload weight, (c) energy stor-
age, (d) sensor resolution and image quality and (e) cognition
capabilities in unstructured environments [4].

While recent research suggests that some hardware con-
straints are likely to be resolved soon [5], the development
of autonomous decision-making processes on sUAVs is a
far more challenging problem [4]. Decision-making capa-
bilities on sUAVs are still limited when dealing with mid-
flight events, path planning and obstacle avoidance, or target
finding under uncertainty and partial observability [6]. Engi-
neers and roboticists usually reduce uncertainty by adjusting
robot working environments to become as structured as pos-
sible [7]. However, real-world applications are unstructured,
full of uncertainties.

Natural disasters are events that unfortunately still claim
human lives around the globe [8,9]. Emergency situations
also occur by unfortunate situations such as people getting
into distress in rivers and shores and lost people in rural
areas. Disaster management and rescue workers are critical
to react in emergency situations and diminish fatalities. In
SAR applications, the overarching aim of autonomous sUAV
navigation is the quick localisation, identification and quan-
tification of victims to prioritise emergency response in af-
fected zones [10]. Various challenges need to be addressed to
enable a sUAV to navigate autonomously in SAR scenarios.

In emergency situations, the available information for the
evaluation of access areas, affected structures (if any), and
the identification of victims (if any) is usually unknown or
limited [11]. Second, the vision tasks performed by a sUAV
are challenging because of noise in the data, low image reso-
lution, illumination conditions, and partial (or full) occlusion
of the victims. Additionally, the application of sUAVs under



cluttered and GPS-denied environments require the use of
Simultaneous Localisation and Mapping (SLAM) algorithms
that rely on advanced sensor systems (e.g. LiDAR), which
are often expensive, complex to operate and sometimes, com-
putationally intensive. Moreover, optimal control of sUAVs
require the use of workstations owing to their resource-
constrained onboard hardware. Normally, SUAV operators
decide on the next sequence of navigation commands to
interact with the environment using visual telemetry [12].
However, the prolonged use of these interactive systems is
claimed to produce fatigue and sensory overloads. Last,
the sUAV must avoid collisions within the surveyed areas,
it should generate a path-planning strategy for exploration
based on the environment, natural disturbances (e.g. wind,
atmospheric pressure, temperature) and the drone kinematic
constraints.

Despite recent advances in autonomous sUAVs for SAR ap-
plications [13-15], there are still unresolved issues. Namely,
lack of validation of these systems in real-world environ-
ments, uncertainty in the identification, location and counting
of objects of interest (i.e. victims) under complex image
representations, and optimal interaction between the drones
and the victims. The above-mentioned limitations motivate
the exploration of sUAV systems with increased cognition
and autonomy level in stochastic environments under target
detection uncertainty from vision-based sensors. This paper
presents a framework for autonomous sUAV navigation that
models target location and identification uncertainties from
vision-based cameras and object detection models. The
problem is formulated as a Partially Observable Markov De-
cision Process (POMDP) and solved online using the Adap-
tive Belief Tree (ABT) algorithm. In particular, a detailed
model of the uncertainty derived from a deep learning object
detector algorithm is demonstrated. The presented system
handles autonomous sUAV navigation under uncertainty as a
multi-objective problem comprising path planning, obstacle
avoidance, motion control, and target detection tasks. The
proposed approach addresses the following challenges:

1. Autonomous sUAV decision-making under environment
uncertainty in SAR applications.

2. Uncertainty on the identification and location of victims
in cluttered and GPS-denied environments.

3. Modelling of target detection uncertainty from vision-
based sensors.

4. Execution of computationally expensive decision-making
and object detection algorithms in resource-constrained
hardware.

The proposed system is validated with experiments in sim-
ulation. In these experiments, the sUAV is tasked with the
mission of finding a lost person in a cluttered environment.

The rest of paper is structured as follows: Section 2 discusses
previous works on autonomous sUAV decision-making under
uncertainty and target detection uncertainty. Section 3 re-
views briefly uncertainty representation, POMDPs and online
ABT solvers for autonomous sUAV navigation. Section 4
details the problem formulation and modelling of target de-
tection uncertainty. Section 5 describes the proposed system
architecture, software and hardware tools, and experimenta-
tion setup. The evaluation of the suggested formulation under
a simulated cluttered and GPS-denied scenario is shown in
Section 6. Finally, Section 7 discusses future work.

2. RELATED WORK

Theory on decision-making is extensive and relates not only
to autonomous sUAV navigation but also to other fields such
as multi-objective decision-making, game theory, navigation
strategies, Bayesian principles, Markov Decision Processes
(MDPs) and Partially Observable Markov Decision Processes
(POMDPs) [16]. Since time-critical applications (e.g. SAR)
feature uncertainty and partial observability in the system
states and targets, MDPs and specially POMDPs have proven
to be useful while making navigation decisions under these
conditions [10, 17-20]. Literature has likewise shown how
the modelling of POMDPs in highly uncertain environments
and partial observability is a suitable approach for SUAV nav-
igation problems [16]. Vanegas and Gonzalez [21], for exam-
ple, implemented an autonomous sUAV navigation algorithm
for GPS-denied and cluttered environments. The authors
compared two of the fastest POMDP online solvers, namely
Partially Observable Monte Carlo Planning (POMCP) [22]
and Adaptive Belief Tree (ABT) [23]. The proposed frame-
work detailed the possibility of using the ABT solver for
the drone to make decisions in seconds. Nonetheless, the
authors narrowed their tests for indoor environments and
detected trivial targets, particularly 2D markers. Additionally,
the navigation commands were transmitted using the sUAV
communication module to a workstation. As discussed by
Valavanis and Vachtsevanos [24] and Carrio et al. [4], the
dependency of communication modules for these tasks is
undesirable because the drone’s behaviour under complex
environments might become seriously compromised if those
modules fail.

Another significant research by Ragi and Chong [18, 25]
presents POMDP-based solvers for dynamic path-planning
applied to multiple target tracking. The POMDP formulation
became more significant towards fully autonomous sUAVs by
including path planning, collision avoidance, external wind
disturbance effects, and tracking evasive treats. Similarly,
Bravo et al. [10] assessed POMDP frameworks in human-
itarian relief applications through simulation. The authors
concluded a higher need to validate existing methods in real
disaster situations. Other related POMDP-based solvers have
also shown advances compared to standard models such as
Anytime Meta PLannEr (AMPLE) [26], POMDP-lite [27],
decentralised POMDP [28] and Mixed Observability Markov
Decision Process (MOMDP) [29].

Research studies on onboard autonomous sUAV decision-
making for real-time applications using POMDPs are limited.
One of the most notable studies is the work conducted by
Chanel et al. [30], who could show a multi-target car recogni-
tion application using a customised optimisation framework.
Their system was able to run the POMDP solver onboard
the sUAV and optimised during execution. The authors,
nevertheless, did not provide relevant experimentation details
such as the SUAV model, hardware specifications and vision-
based algorithms. Furthermore, they also demonstrated the
framework in an open rural field, where levels of target
uncertainty could become considerably low once a car is
perceived under the camera’s FOV and detected by vision-
based detectors. Compared to emergency environments,
image representations of victims are more challenging due
to partial or full occlusion, pose, and dynamics.



3. BACKGROUND
Types of Uncertainty

sUAV perception is limited by noisy SUAV onboard sensors,
poor image representations of the targets caused by partial
and entire occlusion from other objects, and the dynamics of
the target itself [7]. Partial observability from vision-based
cameras introduces target uncertainty, which can be classified
as follows:

1. Location: target location uncertainty is caused by the
limited extent of vision-based sensors to capture images
(also known as Field of View (FOV)). These limitations
are present in mapping, surveillance, and any other target
finding applications under cluttered and challenging en-
vironments. The location of victims in SAR operations
is, for example, challenging when vision-based sensors
cannot cover specific FOV configurations (e.g. sUAV
viewpoint in non-nadir or side-by-side settings) or when
the victims are partially occluded by an urban structure,
the effects of the disaster situation (e.g. fire smokes,
earthquakes, floods) or natural events (e.g. fog, cloudy
and wet conditions).

2. Identification: this refers to limitations on recognising a
specific identification property of the object of interest.
Identification uncertainty on victims includes age, gender
and health conditions.

3. Quantity: target counting uncertainty applies where mul-
tiple victims are partially occluded among themselves,
between themselves and environment objects, or envi-
ronmental factors that affect the image quality of vision-
based sensors. Counting is important in humanitarian
relief operations when rescuers are required to prioritise
emergency response by estimating the number of victims.
The collection of these statistics will determine, therefore,
the areas that require immediate intervention.

4. Dimensions: this type of uncertainty occurs when the
surveying application requires the collection of morpho-
logical properties of the victims. Examples include a
person’s height and volume. In SAR operations, the
awareness of a victim’s height or volume could infer
complementary rescue conditions and define resources
and processes needed to assist them.

Another source of uncertainty comes from the outputs of
computer vision algorithms for object detection. Developed
algorithms use varied strategies for object detection, ranging
from classical image processing manipulations (e.g. filtering,
thresholding, edge and contour detection, and morphological
operations), feature extraction (e.g. SIFT, SURF), adaptive
filtering (e.g. Kalman filters), visual odometry (e.g. SLAM)
and deep learning (e.g. Region-based and Single Shot De-
tector CNNs) [31]. SDPs for autonomous sUAV decision-
making should consider uncertainty from vision-based target
detectors to adjust their path planning when detections lack
accuracy.

Uncertainty in sSUAV navigation is caused by the kinematics
of the drone and disturbances from the environment. Since
a sUAV takes off, there is always a present drift in the
initial position and heading. Errors in a sUAV local position
estimator likewise exist from propagated errors from sensor
readings and motion controllers. Last, the dynamics in the
environment might affect the behaviour of sUAVs, such as
changes in wind direction and currents, temperature and
atmospheric pressure.

4. PROBLEM FORMULATION
Fartially Observable Markov Decision Process

The process of adding cognition capabilities to a SUAV in
uncertain environments can be catalogued as a decision-
making problem. An autonomous sUAV system should
decide the optimal sequence of actions that maximises the
probabilities of accomplishing the flight mission. The flight
mission consists in searching for a victim and stops once the
first victim is found. This selection of sequence of actions
are evaluated not only by achieving the primary search goal,
but also by following some interaction rules with the envi-
ronment, namely collision avoidance, the exploration within
a pre-defined Region of Interest (ROI) and short flight times.
Considering that real-world environments are dynamic, the
sUAV should also evaluate changes in the environment and
update its path planning strategy. Therefore, there must be a
constant interaction between the sSUAV and the environment,
where each action taken by the drone at a time ¢ should be
monitored using collected data from the environment in the
form of observations. This data analysis aims to infer the
current conditions (or states) of the system and how close the
sUAV is to achieve the primary mission goal. Based on that
analysis, the SUAV should decide on the next taken action
at a time ¢ + 1 that increases the chances of accomplishing
the mission. This optimisation problem aims to define a
sequence of actions that maximises those rewards in the long
run, which depend on the current state of the environment and
individual collected rewards.

MDPs are discrete-time mathematical models that allow
the description of Sequential Decision Processes (SDPs)
on environments under uncertainty [7]. A problem for-
mulation under MDPs assumes that the system states are
fully observable. Conversely, POMDPs incorporate uncer-
tainty and partial observability from the agent (i.e. SUAV)
in the system states. POMDPs are defined by the tuple
(S,A,T,R,0, Z,~) where S is a finite set of states, A is a
finite set of actions, 7' is a state transition probability matrix
T:, = P(Si41 = s | St = 8,4 = a), R is a reward
probability matrix R? = E[Ri11 | S: =5, 4 =a], O is
a finite set of observations, Z is an observation probability
matrix 2%, =P[Oy41 =0 Si41 =5, 4, =a],and yisa
discount factor v € [0, 1].

In POMDPs, uncertainty in the system states are represented
by a probability distribution of the system over all possible
states in its state space, called belief states b, defined in
Equation 1:

b(h) = (P [S, = s'[H, = h], -,

1

where H is the history of actions, observations and rewards
that the agent has experienced until time ¢,

Ht = ap,01,71, " ,0at—1,0¢,T¢ (2)

Given a current belief state b, the goal of any POMDP
solver is to find a sequence of actions that maximises the
discounted accumulated reward. This sequence of actions is
commonly known as the policy 7. The behaviour of an agent
is represented by mapping a policy 7 : b — A. The POMDP
is solved by finding the optimal policy 7* that maximises the
expected accumulated reward.



7% 1= arg max (IE [Z YR (StT,ﬂ' (bt’)) |bt°,7T]) 3)
4 7=0

Adaptive Belief Tree

Many online POMDP solvers recompute the optimal policy
at each time step from scratch. This concept or re-planning is
inefficient for real-time applications because of the loss of
computational and time resources by discarding computed
policies at previous time steps. While that loss might not
be as important on static, structured environments, real-world
environments often present gradual or partial changes, which
aggravate that loss of resources. The ABT solver, developed
by Kurniawati and Yadav [23], proposes the reuse of the
previous computed policy and generates policy updates when
changes in the POMDP model are detected. Similar to Par-
tially Observable Monte Carlo Planning (POMCP), ABT can
approximate optimal policies in continuous state spaces. The
ABT solver approximates the solution by maintaining a set
of multiple sample episodes. Consequently, the probability
distributions of the POMDP are not explicitly defined but as
a generative model.

The ABT solver uses an approach of planning and execution
in real time. First, an offline optimal policy is calculated
based on the POMDP model. Then, the agent executes an
action from the offline obtained policy. The agent collects
an observation following the chosen action. Afterwards, the
belief states are updated based on the collected observation.
Subsequently, the ABT solver will update the policy from the
updated belief states. Finally, the agent is ready to execute
the next action from the updated policy.

sUAV Navigation Task

The proposed approach aims for a SUAV to find a lost person
in a cluttered indoor environment. The environment, illus-
trated in Figure 1, contains a restricted flying area, several
obstacles and the person to be found at different position
configurations (further setup details can be found in Section 5
and Section 6). The sUAV is assumed to incorporate a visual
odometry system for pose and motion estimation. Obser-
vations from vision-based sensors comprise a downward-
looking camera. Functions such as take-off, landing, and
return home are delegated to the SUAV autopilot. Therefore,
the autonomous sUAV navigation task will begin after the
drone reaches an initial waypoint location and will finish
after the victim is found. The optimal policy to be learnt is
the one that allows the SUAV to accomplish path planning,
obstacle avoidance, and finding the victim successfully at
different levels of uncertainty. Further details on the system
architecture can be found in Section 5.

State Space

The state space S is the Cartesian product of S,, the state
space of the sUAV S, the state space of the victim.

S = (S, 5) “

The sUAV states are defined in Equation 5,

Sy = (prao'r'afcvfb) (5)

Figure 1: Illustration of the SUAV navigation task to find
people in a cluttered environment.

Dr = (:ET, Yr, Zr) (6)

Op = '(/)r (7)

] true if SUAV crashes, 3

fe= false otherwise. ®)
_ J true if p. > fror,

fo= {false otherwise. ®

where p, is the position of the robot and o, is the orientation
of the robot in the world Cartesian frame; o, is simplified
to v, because multi-rotors primarily control their orientation
based on their yaw angle only; f. is a discrete state that
defines whether the sUAV has crashed with an obstacle and
fv determines whether the SUAV is flying beyond the limits
of the flying area.

The victim states are defined by Equation 10,

Sy = (pw Ovyfv) (10)
Pv = (xmyvazv) (11)
0y = Py (12)

if target is found,

otherwise. (13)

true
fo= {false

where p,, is the position of the victim and o,, is the orientation
of the victim in the world Cartesian frame; The orientation of
a person can likewise be simplified using 1), only, the victim’s
yaw angle; f, is the discrete state of whether the target has
been found by the SUAV.



Table 1: sUAYV set of actions

[Action | p;(m) [ o.(rad) |
Forward | (0.3,0,0) 0
Right 0,0,0) /4
Left (0,0,0) /4
Up 0,0,0.3) 0
Down | (0,0,-0.3) 0
Hover (0,0,0) 0

Actions

The multi-rotor interacts with the environment using a set of
six actions, as shown in Table 1.

For any flight mission, the POMDP assumes that the SUAV is
already flying when it starts its autonomous interaction with
the environment. Therefore, other common sUAV actions
such as autonomous takeoff, landing and return home are
addressed by the sSUAV autopilot instead.

Transition Function

The motion model of the SUAV is based on the set of actions
described above. Changes in rotation can be modelled using
the rotation matrix R of a quad-rotor [32]. Owing to the
kinematics of a multi-rotor sUAV, the evaluation of its § and
¢ angles are discarded in the model. Additionally, an angle
deviation ¢ is added to 1 to incorporate uncertainty caused
by pose estimation errors. This uncertainty is modelled as a
normal distribution with mean p = v, and standard deviation
o = 3.0°. Thus, R is simplified as shown in Equation 14.

COS<1/)T + ‘PT) - Sin(wr + 907’) 0

R, = |sin(¢r + @) cos(r+¢r) O (14)
0 0 1

The transformation matrix to model changes in position per
time step is defined through Equation 15,

Drypy = DPr, + th Aprt (15)

which can be expanded as:

Lryiq L,
yTt+1 - yr,, +
Z’f’t+1 ZTt
16
COS('{/}’M + sp""t) - Sin(%q + @Tt) 0 Amm ( )
Sin(wﬁ + <th) COSW}m + SOTt) 0 Ayn
0 0 1] [Az,

where Ap,, = (Az.,,Ay,,,Az.,) is the change in the
robot’s location from time step ¢ to time step ¢ + 1.

The dynamics of the sSUAV through changes in position
(Ap,,) are modelled using a system identification process.
Further details on the calculation of Ap,, can be found in the
Appendix.

Rewards

The system rewards R is defined by Equation 17,

R = Tmove + Terash + Tout + T+ T4 o))

where rpove 1S the cost (negative reward) per move, which
encourages the sUAV to find the victim in a minimum number
of steps. rcrash 1S the cost for the drone by crashing itself with
an obstacle; 7oy is the cost of flying beyond the explicitly
defined Region of Interest (ROI) limits; 7y is the reward if
the victim is found; and r is the cost given by the Euclidean
distance between the SUAV and victim locations, as defined
in Equation 18:

Tda = _\/<prw - pvw)2 + (pry - pvy)z + (pTz _pv2>2
(18)

The cost values of 74 are directly proportional to the distance
between the robot and the victim in the z, y, z axes. Including
rq encourages the SUAV to get closer to the victim and collect
better image representations from vision-based sensors. The
values for the rest of the rewards were acquired empirically,
as shown in Table 2.

Table 2: System rewards for a sUAV target finding task

Reward ‘ Value ‘

Tmove —10
Tcrash —150
Tout —300
ry 500

Observation Space

The set of observations O for this problem are defined as:

O = (OPMOPmOUf) (19)

where o, is the local pose estimation of the robot; o, is
the local pose estimation of the victim; and o, ; is a discrete
observation defining whether the victim has been detected
by the sUAV computer vision object detector. The victim
pose observation is received only when the person is found.
The object detector executes a pre-trained off-the-shelf deep
learning object detector model. The datasets used to fit these
models commonly contain thousands of images of classes
collected from a frontward-looking camera configuration.

Observation Model

The observation model Z comprises the estimated SUAV
position in the world coordinate frame and the location of
the victim if it is detected by the downward-looking camera.
The detection of a victim relies on the camera’s Field of
View (FOV). The modelling of the FOV depends on the
sensor properties, the robot’s pose and heading observations.
First, the horizontal and vertical FOV angles are calculated as
defined in Equation 20 and Equation 21.

FOVV::Ztan_l(;U) (20)

FOVﬁ::Qtan_l(;}> (21)



where w is the sensor width, h is the sensor height, and f is
the focal length of the downward-looking camera. The extent
of the observed FOV area (or footprint) is calculated as:

lop = Pr(s) - tan(a + 0.5 - FOVy) 22)
Ibottom = Pr(z) - tan(a — 0.5 - FOVy) (23)
left = Pr(z) - tan(a + 0.5 - FOVy) 24)
liight = Pr(=) - tan(a — 0.5 - FOVy) (25)

where [, is the footprint extent of any collected image and
« is the gimbal angle of the camera from the vertical (i.e. 0
degrees), as depicted in Figure 2.

The calculation of the footprint point coordinates with its
center in the origin is defined as:

¢1 = (liops liet, 0) (26)
c2 = (liops Lrignt, 0) 27)
3 = (Ibottom lright; 0) (28)
ca = (Ibottom, lett, 0) (29)

A transformation matrix is then calculated to locate the point
coordinates within the sSUAV reference frame:

'y r(z) cos(¢r) —sin(ypy) 0] [co
[c’y] = lpr(y) + [sin(¢,.)  cos(ey) O] [cy] (30)
C/z pr(z) 0 0 1 Cz

A victim is predicted to be within the camera’s FOV if
a belief location point of the person is positioned inside
the rectangular polygon from the group of ¢ points. This
calculation is performed as the sum of the angles between
the victim belief position point and each pair of points that
comprise the rectangle [33], as defined in Equation 31.

From this formulation, the victim location point is predicted
to be inside of the camera’s FOV if § = 2w. Perfect
accuracy is, however, assumed here from any vision-based
model implemented in the detection subsystem. Target detec-
tion uncertainty from computer vision, and specifically, pre-
trained deep learning detectors, occurs from different factors,
including image noise, illumination conditions, image reso-
lution, image representations of people from the dataset and
camera configuration. Even though these object detection
models can be improved using different techniques, some
of these factors (that cause uncertainty) can be simulated by
extending the target finding modelling. Taking into account

that off-the-shelf object detection models give their best re-
sults when achieving close image representations from their
trained datasets (e.g. ImageNet, COCO), a positive person
detection is simulated if the SUAV and victim heading angles
are similar (i.e. aligned) each other, as defined in Equation 32.

found

_ if 0 = 27 and |9, — ;| < 30°
target = {not found v

otherwise
(32)

From the observation model described above and the reward
function defined in Equation 17 and Equation 18, target
detection uncertainty from deep learning object detectors is
expected to be reduced by encouraging the robot to fly at
a close distance between the victim and the drone itself.
Furthermore, the sUAV will also adjust its orientation to
match potentially a scene representation that increases the
likelihood of the detector to detect a person.

5. IMPLEMENTATION
System Architecture

The proposed framework comprises four modules that inter-
act with a multi-rotor SUAV under simulation, as shown in
Figure 3.

Software in the Loop module—The sUAV is controlled using
PX4, an open source software developed by the Dronecode
Project [34]. The PX4 architecture is comprised of two
layers: the flight stack layer and the middleware layer. The
flight stack layer contains a pipeline of flight controllers for
a rich set of UAVs (multi-rotors, fixed-wing and VTOL)
and altitude and position estimators. These estimators usu-
ally make predictions from one or multiple sensor inputs
such as IMU and GPS. The PX4 flight controller follows a
feedback control loop process for position and velocity set-
point values, a PID controller, and feedback signals from
the estimators. The middleware layer contains the device
drivers for the SUAV sensors, communication interfaces, and
a simulation layer.

The simulation layer (PX4 Software in the Loop (SITL))
ports the PX4 architecture in a simulated SUAV platform and
environment to a local machine. The sUAV (a 3DR Iris)
and the download-looking camera (an ov7251) are simulated
under the Gazebo simulator.

Hardware in the Loop module—Given hardware limitations
on sUAVs, an Intel® Neural Compute Stick is integrated into
the system. The stick is a plug and play Vision Processing
Unit (VPU) device, an optimised microprocessor that boosts
inference from deep learning models. Intel provides a spe-
cific software toolkit to obtain performance gains through
the OpenVINO library. OpenVINO supports a range of
deep learning frameworks such as TensorFlow, Caffee and
PyTorch, and optimised versions of OpenCV and OpenVX
for standard image processing operations. The source code
for target detection with OpenVINO contains ROS bindings
in Python, allowing the use of this hardware for both real tests
and simulation environments via PX4 SITL and Gazebo. The
latter provides, therefore, support under a Hardware in the
Loop (HITL) interface.

Detection module—The detection module comprises a deep
learning object detector. The selected detector is an open-



Ground

Cq i C3

Figure 2: FOV and 2D image representation from a vision-based camera pointing to the ground with an angle o from

the vertical.

Decision-making module

POMDP solver

1

Obs. Model

Software in the Loop (SITL) module

sUAV
flight controller

UAV >

Sensors [«

Computer vision <

detector

Detection module

Figure 3: Proposed system architecture under a simulation environment.

source instance of the Google MobileNet Single Shot Multi-
box Detector (SSD) architecture [35]. The model is deployed
in caffe and fit using pre-trained weights from the PASCAL
VOCO0712 dataset, achieving a mean average precision of
72.7%. For every read frame, the detection module sub-
scribes to a downward-looking camera ROS topic included
in the Iris model. Input frames are resized into dimensions
of 300 x 300. Any object detections with a confidence
value greater than 30% from the output layer are displayed
in the processed frame. If the chosen class (i.e. the object of
interest) is displayed, the position of the object is estimated
following the formulation described in Section 4. An illus-
tration of a person detection from the deep learning model is
shown in Figure 4.

Decision-making module—The POMDP formulation, which
was described in Section 4, is computed using the TAPIR
toolkit [36]. The toolkit incorporates the online ABT solver

which handles continuous states. Additionally, TAPIR in-
cludes a ROS interface that eases communication between the
online solver and the sUAV flight controller (PX4 SITL).

Experimentation Setup

The system was tested in a cluttered and GPS-denied sim-
ulated environment using the Gazebo simulator. The goal
of the sUAV is to find a child who needs assistance to
contextualise the experiments under SAR situations. The
flying area, with dimensions 6 X 6 m in length and width
and 3 m in height, contains several column obstacles using
cardboard boxes and a table, as shown in Figure 1.

The test scenario contains three cardboard obstacles in form
of columns placed throughout the scene, a table that partially
occludes the victim, a safety net which delimits the flying
area and a child dummy to be found. For all the experiments,
the child is always located under the table at world Cartesian
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Figure 4: Detection example of a child dummy from a
downward-looking camera under Gazebo SITL. the sUAV
takes actions to align itself with the child and minimise
uncertainty.

coordinates (2.0, —2.0,0.2). Visuals of the child come from
a downward-looking camera attached to the Iris UAV frame.
The sUAV uses the take-off and landing modes from the PX4
autopilot, and start the navigation task at world Cartesian
coordinates (—2.0, —2.0, 2.0).

6. RESULTS

The autonomous decision-making system and target detec-
tion uncertainty is evaluated with two types of setups. The
first setup declares different levels of child location uncer-
tainty within the flying area. The second setup evaluates the
system under different child orientation configurations.

Location Uncertainty

Location uncertainty for the child is defined through three
case studies, illustrate in Figure 5 and described as follows:

A single location estimation: the belief states of the victim
location are represented as a point cloud, sorted as a
normal distribution (x = Om, o = 0.5m) at one specific
region (top right corner from Figure 5a).

B multiple location estimation: the belief states of victim
location now include two possible locations, which are
sorted as a normal distribution (4 = Om, o = 0.5m) and
represented as two point clouds (Figure 5b).

C uniform location estimation: the belief states of the victim
location are uniformly distributed into the flying area,
assuming thus, that the location of the victim is unknown
(Figure 5c).

Each case study was run 40 times, with a mean duration per
time step of 1.049 seconds. The success rate per case study is
illustrated in Table 3.

Table 3: Location uncertainty success rates under SITL.

Success Rate Failure Rate | Failure Rate

Case Study (Target found) (Crash) (Timeout)
A 100% 0% 0%
B 87.5% 12.5% 0%
C 52.5% 2.5% 45%

Overall, the success rate for case study A is remarkable,
achieving 100% of successful runs. The sUAV was able
to follow the reward structure with the absence of crash
reports or flying beyond the ROI limits. The drone planned a
trajectory that ensured matching its location above the target

it et o e
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Figure 5: SITL environment illustration that overlays an
occupancy map (in green) and the belief map (in red).

point cloud first, followed by adjusting its heading angle
to filter target location particles until the detection subsystem
found the target. Similarly, case study B, which encouraged
the SUAV to fly nearby two of the cardboard boxes, achieved
a success rate of 87.5%. As shown in Figure 5b, a second
point cloud of child location estimations was added in the
middle of two cardboard columns. Even though the drone
was able to adjust its trajectory after filtering all the particles
in zones without the presence of the child, drifts in the x and
y axes were clearly visible while the SUAV spun next to the
columns. For case study C, the number of failures became
evident by exceeding the maximum flight time of the sUAV.
The evaluation of the sUAV and target heading angles in the
observation model provoked an increase in the number of
time steps to discard particles, as demonstrated in Figure 6.

The number of time steps was consistent for case study A,
with a median of 35 steps and an inter-quartile range of four
steps. When the number of target particles covers a bigger
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Figure 6: Time steps of successful runs under location
uncertainty.

region in the flying area, so is the number of required actions
(spins) to evaluate different heading angles. In fact, the
median number of time steps almost doubled for case study B
and a evident greater variability on time steps for case study
C.

Orientation Uncertainty

The sUAV navigation task and the POMDP observation
model were also evaluated by varying the heading (or orienta-
tion) of the child. The child was placed using four orientation
configurations, as shown in Figure 7. For each configuration,
the distribution of possible locations (location uncertainty)
for the dummy followed the settings of case study A.

(d) 9y — 11 % 270°

(©) ¥r — by ~ 180°

Figure 7: Dummy child at different orientation configura-
tions.

The success rate per case study is illustrated in Table 4.

The sUAV was able to navigate and detect the child with
a mean success rate of 98%. Indeed, the lost child was

Table 4: Success rates for defined levels of target uncer-
tainty under SITL.

Success Rate Failure Rate | Failure Rate

Case Study (Target found) (Crash) (Timeout)
A 100% 0% 0%
B 97.5% 2.5% 0%
C 100% 0% 0%
D 95% 5.0% 0%

always found when the particle distribution surrounded the
child location at different orientations. The distribution of
time steps for all the episodes is illustrated in Figure 8.
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Figure 8: Time steps of successful runs under orientation
uncertainty.

The median number of time steps for the SUAV while col-
lecting child frames was the lowest when its image repre-
sentations were aligned with the SUAV (¢, — ¢y = 0°), as
depicted in Figure 4. Conversely, an alignment difference
of 180° resulted in a bigger number of time steps to detect
the child. The big variance and outliers in time steps for
alignment differences of 90° and 270° happened because
of the partial occlusion from the table, requiring a higher
number of actions for the sSUAV to get a clear visual of the
child. This variance also illustrates the adaptability of the
sUAV in a environment under uncertainty, given the way
PX4 Gazebo SITL emulates stochastic odometry errors in the
drone and external disturbances in the environment.

7. CONCLUSIONS

This paper introduced a solution to the problem of searching
victims with a prior probability with respect to the likely
location of the victims. The problem was formulated as a
Partially Observable Markov Decision Process to solve the
task as a multi-objective sSUAV navigation problem that in-
corporates uncertainty and partial observability represented in
state belief. The proposed framework was validated on SAR
mission simulated in an indoor cluttered environment under
different levels of location and orientation uncertainties. The



experiments were tested using PX4, Gazebo SITL, ROS, an
Intel VPU for deep learning inference (HITL) and TAPIR.

The problem formulation and system architecture consti-
tute a substantial extension on previous contributions on
autonomous sUAV decision-making for target finding under
uncertainty. Specifically, the proposed system presents an
extension on the work of Vanegas et al. [37] by incorporating:

« An observation model that incorporates target detection
uncertainty for vision-based object detectors.

« Experimentation close to real-world conditions under
SITL and HITL capabilities.

« Onboard target detection using deep learning and VPUs
for real-time inference under resource-constrained hard-
ware.

The results demonstrate the capability of the proposed system
to deal with high levels of environment and target detection
uncertainty as well as progress towards automating surveil-
lance operations for applications that require rapid interven-
tion such as SAR.

APPENDIX
System Identification

Motion response of the plant (i.e. sSUAV) is collected by
measuring the robot’s position values y(¢) under a step re-
sponse r(t) in z, z and v from the world coordinate frame.
As an illustration, the process to identify the system under
a step position response in x is illustrated herewith. First,
the transfer function of the plant was calculated using the
System Identification Toolbox"™ from MATLAB®, as shown
in Equation 33.

0.204s +1.136
s24+1.253s +1.134

F(s) = (33)

The calculation of the plant in time discrete is done using
the Tustin approximation method, which is defined in Equa-
tion 34,

o 2(z-1)
T (2 +1) 34)

where T is the sampling period. Assuming 75 = 0.1s, the
discretised plant F'(z) equals:

0.01224 + 0.0053332~1 — 0.0069052 2
1—1.872z71 4 0.88242—2

F(z) = 35)

The difference equation from F'(z) is calculated by applying
the inverse Z transform:

(Ao + Alz_l + A22_2> R(Z)

Viz) —
(Z) 1+ Blz_l =+ BQZ_2
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y(k) = Aor(k) + Air(k — 1) + Aor(k — 2)

36
Buylk—1) - Bay(k—2)  °®

where
Ay = 0.012237830217107

A; = 0.005333276901521
As = —0.006904553315587
By = —1.871779712793530

By = 0.882425299507294

The value of Az,, is ultimately calculated by iterating Equa-
tion 36 every T, seconds until reaching the total duration per
time step.
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